3 Decimals
P3: Decimals — Reading, Writing, and Operations
Goals: Convert between word and standard form of decimals, and perform addition, subtraction,
multiplication, and division with decimals (including sign rules and place-value alignment).
0. Decimal Place Value
From the decimal point moving right: tenths, hundredths, thousandths, ten-thousandths…
- [latex]0.7[/latex] = seven tenths
- [latex]0.78[/latex] = seventy-eight hundredths
- [latex]0.029[/latex] = twenty-nine thousandths
1. Writing Decimals from Words (and Vice Versa)
Rules to Go from Words → Number
- Write the whole-number part (if none, write [latex]0[/latex]).
- Say “and” only at the decimal point.
- Write the fractional words as digits; the last word tells the place value.Example: “seventy eight hundredths” → [latex]0.78[/latex].
Rules to Go from Number → Words
- Read the whole-number part.
- Say “and” at the decimal point.
- Read the digits to the right of the decimal as a whole number, then state the place value.Example: [latex]44.56[/latex] → “forty-four and fifty-six hundredths”.
2. Operations with Decimals
2.1 Adding & Subtracting Decimals
- Line up the decimal points in vertical form.
- Use placeholder zeros so each number has the same length (e.g., [latex]2.2 = 2.200[/latex]).
- Add/subtract as with whole numbers, then place the decimal in the aligned column.
2.2 Multiplying Decimals
- Ignore decimal points and multiply as whole numbers.
- Count total decimal places in the factors.
- Place the decimal in the product so it has that many decimal places.
- Apply sign rule: negative [latex]\times[/latex] positive is negative, etc.
2.3 Dividing Decimals
- If the divisor is a decimal, move the decimal right until the divisor is a whole number, and move the dividend’s decimal the same number of places.
- Divide as usual; bring the decimal straight up into the quotient.
- Apply sign rule for division (same signs → positive; different signs → negative).
3. Practice Set
Writing Numbers from Words
- seventy eight hundredths → [latex]0.78[/latex]
- twenty nine thousandths → [latex]0.029[/latex]
- thirty eight and sixty six hundredths → [latex]38.66[/latex]
- four hundred sixty four and forty five hundredths → [latex]464.45[/latex]
Writing Words from Numbers
- [latex]44.56[/latex] → forty-four and fifty-six hundredths
- [latex]0.0018[/latex] → eighteen ten-thousandths
- [latex]0.011[/latex] → eleven thousandths
- two hundred one and forty-one hundredths → [latex]201.41[/latex]
- forty-two thousandths → [latex]0.042[/latex]
Adding & Subtracting
- [latex]\displaystyle 11.801 + 2.559 = 14.360[/latex]
- [latex]\displaystyle 16.977 - 7.614 = 9.363[/latex]
- [latex]\displaystyle 5.316 - 2.2 = 5.316 - 2.200 = 3.116[/latex]
- [latex]\displaystyle 6.3 - 3.899 = 6.300 - 3.899 = 2.401[/latex]
- [latex]\displaystyle 4.822 - 8.3 = 4.822 - 8.300 = -3.478[/latex]
- [latex]\displaystyle 13.2 - 2.0 = 11.2[/latex]
Multiplying
- [latex]\displaystyle 2.46 \times 6.52 = 16.0392[/latex]
- [latex]\displaystyle 0.034 \times 0.0032 = 0.0001088[/latex]
- [latex]\displaystyle 3.1 \times 3.41 = 10.571[/latex]
- [latex]\displaystyle -6.25 \times 2.27 = -14.1875[/latex]
- [latex]\displaystyle 0.088 \times (-0.0044) = -0.0003872[/latex]
- [latex]\displaystyle -9.6 \times -1.31 = 12.576[/latex] (negative [latex]\times[/latex] negative = positive)
Dividing
- [latex]\displaystyle 45.08 \div 9.2[/latex]:
move decimals → [latex]\displaystyle 450.8 \div 92 = 4.9[/latex] - [latex]\displaystyle -14.95 \div 2.3[/latex]:
move decimals → [latex]\displaystyle -149.5 \div 23 = -6.5[/latex]
Fraction & Decimal Connections
- Evaluate in fractions; give a reduced fraction:[latex]\displaystyle \frac{7}{8} + 0.8 = \frac{7}{8} + \frac{8}{10} = \frac{7}{8} + \frac{4}{5} = \frac{35}{40} + \frac{32}{40} = \frac{67}{40}[/latex]
- Multiply; give a decimal to the nearest hundredth:[latex]\displaystyle \left(\frac{7}{8}\right)\cdot 1.1 = \frac{7}{8}\cdot \frac{11}{10} = \frac{77}{80} = 0.9625 \approx 0.96[/latex]
How were products found?
- [latex]\displaystyle 2.46\times 6.52[/latex]: treat as [latex]\displaystyle 246\times652=160392[/latex], then place 4 decimal places → [latex]\displaystyle 16.0392[/latex].
- [latex]\displaystyle 0.034\times 0.0032[/latex]: [latex]\displaystyle 34\times32=1088[/latex]; 3+4 decimal places → [latex]\displaystyle 0.0001088[/latex].
- Signs: negative [latex]\times[/latex] positive = negative; negative [latex]\times[/latex] negative = positive.
4. Quick Checklist for Students
- Add/Subtract: Decimals aligned? Zeros added as placeholders?
- Multiply: Count total decimal places after multiplying the whole-number versions.
- Divide: Make the divisor a whole number by shifting both numbers the same number of places.
- Words/Numbers: Say “and” only at the decimal; use place value names correctly.
- Signs: Same signs → positive; different signs → negative.