"

11 Counting and Numerals Homework

Exercise 1

For each two sets noted, indicate whether or not the sets match. If they do, show a matching. If they do not, explain why not.

a. Small Blue A-blocks and Large Red A-Blocks

b. Yellow A-blocks and Circular A-blocks

Exercise 2

Describe a matching between the set of counting numbers, {1, 2, 3, …} and the set of positive multiples of five, {5, 10, 15, …}.

Exercise 3

Show every possible one-to-one correspondence between the Small Blue A-blocks and the Small Red A-blocks. Use abbreviations or pictures to denote the blocks.

Exercise 4

Convert each numeral to a Hindu-Arabic Base Ten numeral.

a. STROKE: | | | | | | | | | | | | | | | |
b. Tally: [latex]\cancel{||||}\cancel{||||}\cancel{||||} |||[/latex]
c. Roman: MCMLXII
d. Roman: DCCXLIV
e. Roman: [latex]\bar{\bar{\text{IV}}\text{CCX}}[/latex]DLI

f. Egyptian:

𓁨 π“‚­ π“‚­ 𓁨 𓆼 ∩ ∩ 𓁨 π“‚­

g. Chinese

ε››

千

ε…­

十

δΈ‰

h. Mayan

𝋧

𝋠

𝋰

𝋣

i. [latex]4032_{\text{seven}}[/latex]
j. [latex]T6W_{\text{thirteen}}[/latex]
k. [latex]1 111 001 011_{\text{two}}[/latex]
l. [latex]507_{\text{nine}}[/latex]

Exercise 5

Convert 342 to a numeral in the numeration system or base specified.

a. Roman b. Base Seven c. Egyptian
d. Base Two e. Chinese

Exercise 6

Convert 838 to:

a. Base Twelve b. Base Eight
c. Base Five d. Mayan

Exercise 7

Convert 13,595 to Base Twelve

Exercise 8

Convert 120,258 to Mayan

Exercise 9

Count from 620 to 630 in Base Five

Exercise 10

State the numeral that comes just before:

a. [latex]173 425 760_{\text{eleven}}[/latex] b. [latex]2 010 212 000_{\text{four}}[/latex]

Exercise 11

State the numeral that comes right after:

a. [latex]539100TE_{\text{twelve}}[/latex] b. [latex]3 102 313 444_{\text{five}}[/latex]

Exercise 12

Answer true or false. If false, explain why

a. [latex]2_{\text{four}} = 2[/latex] b. [latex]3_{\text{four}} = 3_{\text{twelve}}[/latex] c. [latex]10_{\text{twelve}} = 10_{\text{five}}[/latex]

Exercise 13

Using Base Three blocks, you had 7 flats, 10 longs and 5 units. What number does this represent in

a. Base Three? b. Base Ten?

Exercise 14

Write each number shown in expanded notation as a numeral in the base specified.

a. [latex]3 \times 7^{8} + 6 \times 7^{5} + 4 \times 7^{4}[/latex] to Base Seven
b. [latex]1 \times 3^{10} + 2 \times 3^{9} + 2 \times 3^{3}[/latex] to Base Three

Exercise 15

Write each number in expanded notation:

a. [latex]200 050 030 000_{\text{nine}}[/latex]
b. [latex]1 000 100 001 000_{\text{two}}[/latex]

Exercise 16

Write each numeral in expanded form. Then, convert each numeral to a Base Ten mixed numeral with the fraction simplified.

a. [latex]43.3_{\text{nine}}[/latex] b. [latex]35.12_{\text{six}}[/latex]
c. [latex]121.21_{\text{three}}[/latex] d. [latex]333.333_{\text{five}}[/latex]

Exercise 17

Rewrite from expanded form to a numeral in the appropriate base.

a. [latex]3 \times 4^{2} + 2 \times 4^{0} + 3 \times 4^{-1} + 1 \times 4^{-3}[/latex]
b. [latex]5 \times 11^{3} + 10 \times 11^{1} + 8 \times 11^{-1} + 1 \times 11^{-2}[/latex]
c. [latex]1 \times 2^{2} + 1 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-4}[/latex]

License

Math for Elementary Teachers Copyright © by Elizabeth Kelly. All Rights Reserved.