32 Homework
Compute and simplify the following. Show all of the steps. Use the binary operations defined in the "Operations and Properties" section of this book.
a. [latex]5 * 9[/latex] b. [latex]4 * 8[/latex] c. [latex]b * a[/latex] d. [latex]1 ◊ 5[/latex]
e. [latex]7 ◊ 4[/latex] f. [latex]b ◊ a[/latex] g. [latex]88 ∇ 79[/latex] h. [latex]m ∇ n[/latex]
i. [latex]b ∇ a[/latex] j. [latex]6 λ 5[/latex] k. [latex]2 λ 7[/latex] l. [latex]b λ a[/latex]
m. [latex]8\dagger1[/latex] n. [latex]4\dagger6[/latex] o. [latex]b\dagger a[/latex] p. [latex]8 @ 5[/latex]
q. [latex]9 @ 4[/latex] r. [latex]b @ a[/latex] s. [latex]6 Θ 7[/latex] t. [latex]2 Θ 5[/latex]
u. [latex]b Θ a[/latex] v. [latex]3\otimes8[/latex] w. [latex]5 \otimes 6[/latex] x. [latex]b \otimes a[/latex]
y. [latex]7 ⊥ 8[/latex] z. [latex]3 ⊥ 2[/latex] aa. [latex]b ⊥ a[/latex]
Simplify each of the following. Show each step.
a. [latex]3 * (4 * 2)[/latex] b. [latex]3 @ (5 @ 2)[/latex] c. [latex]3 ∇ (5 ∇ 2)[/latex]
Compute the following, using the definitions for the operations defined in the "Operations and Properties" section of this book. Show each step.
a. [latex](1 \otimes 2) Θ 7[/latex] b. [latex](3 * 1) ◊ c[/latex] c. [latex](8 ∇ 5) λ 6[/latex]
d. [latex]7 \otimes (6 ◊ 13)[/latex] e. [latex]5 * (2 Θ 2)[/latex] f. [latex]8 ∇ (5 λ 6)[/latex]
4
Suppose that a number system uses only the symbols a, b, c, d, and the operation [latex]Ψ[/latex]. The basic facts are illustrated in the table.
Ex. A [latex]Ψ[/latex] C = B or D [latex]Ψ[/latex] B = B
| [latex]Ψ[/latex] | [latex]A[/latex] | [latex]B[/latex] | [latex]C[/latex] | [latex]D[/latex] |
| [latex]A[/latex] | [latex]C[/latex] | [latex]D[/latex] | [latex]B[/latex] | [latex]A[/latex] |
| [latex]B[/latex] | [latex]D[/latex] | [latex]C[/latex] | [latex]A[/latex] | [latex]B[/latex] |
| [latex]C[/latex] | [latex]B[/latex] | [latex]A[/latex] | [latex]D[/latex] | [latex]C[/latex] |
| [latex]D[/latex] | [latex]A[/latex] | [latex]B[/latex] | [latex]C[/latex] | [latex]D[/latex] |
b) Is the operation commutative? Why?
c) Does the operation have an identity? If so, what is it?