"

6 The Atom and Elements

Chapter Learning Objectives

After successful completion of the assignments in this section, you will be able to demonstrate competency in the following areas:

  1. Describe the electron configuration of an atom by using the Bohr model (CLO2)
  2. Compute the atomic mass of an atom (CLO4)
  3. Identify isotopes of common elements (CLO4)
  4. Use the periodic table to obtain information (CLO4)
The image is a seed head of a false dandelion flower enlarged to the macro level.
Fig. 6.1 Atoms are so tiny that we cannot see them with our eyes, but we know they interconnect forming chains, rings and bonds. When looking at the seed head of this false dandelion through a macro lens, one might be able to connect the dots and imagine the atoms with their chains, rings and bonds. Atoms truly are everywhere.

Atoms—Building Blocks of Matter

The earliest recorded discussion of the basic structure of matter comes from ancient Greek philosophers, the scientists of their day. In the fifth century BCE, Leucippus and Democritus argued that all matter was composed of small, finite particles that they called atomos, a term derived from the Greek word for “indivisible.” They thought of atoms as moving particles that differed in shape and size, and which could join together. Later, Aristotle and others came to the conclusion that matter consisted of various combinations of the four “elements”—fire, earth, air, and water—and could be infinitely divided. Interestingly, these philosophers thought about atoms and “elements” as philosophical concepts, but apparently never considered performing experiments to test their ideas.

Dalton’s Atomic Theory

The Aristotelian view of the composition of matter held sway for over two thousand years, until English schoolteacher John Dalton helped to revolutionize chemistry with his hypothesis that the behavior of matter could be explained using an atomic theory. First published in 1807, many of Dalton’s hypotheses about the microscopic features of matter are still valid in modern atomic theory. Here are the postulates of Dalton’s atomic theory.

  1. Matter is composed of exceedingly small particles called atoms. An atom is the smallest unit of an element that can participate in a chemical change.
  2. An element consists of only one type of atom, which has a mass that is characteristic of the element and is the same for all atoms of that element. A macroscopic sample of an element contains an incredibly large number of atoms, all of which have identical chemical properties.
  3. Atoms of one element differ in properties from atoms of all other elements.
  4. A compound consists of atoms of two or more elements combined in a small, whole-number ratio. In a given compound, the numbers of atoms of each of its elements are always present in the same ratio.
  5. Atoms are neither created nor destroyed during a chemical change, but are instead rearranged to yield substances that are different from those present before the change.

Dalton’s atomic theory provides a microscopic explanation of the many macroscopic properties of matter that you’ve learned about. For example, if an element such as copper consists of only one kind of atom, then it cannot be broken down into simpler substances, that is, into substances composed of fewer types of atoms. And if atoms are neither created nor destroyed during a chemical change, then the total mass of matter present when matter changes from one type to another will remain constant (the law of conservation of matter).

Atomic Structure

The development of modern atomic theory revealed much about the inner structure of atoms. An atom contains a very small nucleus composed of positively charged protons and uncharged neutrons, surrounded by a much larger volume of space containing negatively charged electrons. The nucleus contains the majority of an atom’s mass because protons and neutrons are much heavier than electrons, whereas electrons occupy almost all of an atom’s volume. The diameter of an atom is on the order of 1010 m, whereas the diameter of the nucleus is roughly 1015 m—about 100,000 times smaller. For a perspective about their relative sizes, consider this: If the nucleus were the size of a blueberry, the atom would be about the size of a football stadium (Figure 6.2).

 

The diagram on the left shows a picture of an atom that is 10 to the negative tenth power meters in diameter. The nucleus is labeled at the center of the atom and is 10 to the negative fifteenth power meters. The central figure shows a photograph of an American football stadium. The figure on the right shows a photograph of a person with a handful of blueberries.
Fig. 6.2 If an atom could be expanded to the size of a football stadium, the nucleus would be the size of a single blueberry.

Atoms—and the protons, neutrons, and electrons that compose them—are extremely small. For example, a carbon atom weighs less than 2 × 1023 g, and an electron has a charge of less than 2 × 1019 C (coulomb). When describing the properties of tiny objects such as atoms, we use appropriately small units of measure, such as the atomic mass unit (amu) and the fundamental unit of charge (e). The amu was originally defined based on hydrogen, the lightest element, then later in terms of oxygen. Since 1961, it has been defined with regard to the most abundant isotope of carbon, atoms of which are assigned masses of exactly 12 amu. Thus, one amu is exactly a 12th of the mass of one carbon-12 atom: 1 amu = 1.6605 ×1024 g.  The fundamental unit of charge (also called the elementary charge) equals the magnitude of the charge of an electron (e) with e = 1.602 ×1019 C.

A proton has a mass of 1.0073 amu and a charge of 1+. A neutron is a slightly heavier particle with a mass 1.0087 amu and a charge of zero; as its name suggests, it is neutral. The electron has a charge of 1− and is a much lighter particle with a mass of about 0.00055 amu (it would take about 1800 electrons to equal the mass of one proton). The properties of these fundamental particles are summarized in Table 2.1. (An observant student might notice that the sum of an atom’s subatomic particles does not equal the atom’s actual mass: The total mass of six protons, six neutrons, and six electrons is 12.0993 amu, slightly larger than 12.00 amu. This “missing” mass is known as the mass defect.)

Properties of Subatomic Particles

Name

Location

Charge (C)

Unit Charge

Mass (amu)

Mass (g)

electron

outside nucleus

−1.602 x1019

1−

0.00055

0.00091 x1024

proton

nucleus

1.602 x1019

1+

1.00727

1.67262 x1024

neutron

nucleus

0

0

1.00866

1.67493 x1024

Table 6.1

The number of protons in the nucleus of an atom is its atomic number (Z). This is the defining trait of an element: Its value determines the identity of the atom. For example, any atom that contains six protons is the element carbon and has the atomic number 6, regardless of how many neutrons or electrons it may have. A neutral atom must contain the same number of positive and negative charges, so the number of protons equals the number of electrons. Therefore, the atomic number also indicates the number of electrons in an atom. The total number of protons and neutrons in an atom is called its mass number (A). The number of neutrons is therefore the difference between the mass number and the atomic number: A – Z = number of neutrons.

Atoms are electrically neutral if they contain the same number of positively charged protons and negatively charged electrons. When the numbers of these subatomic particles are not equal, the atom is electrically charged and is called an ion. The charge of an atom is defined as follows:

Atomic charge = number of protons − number of electrons

As will be discussed in more detail, atoms (and molecules) typically acquire charge by gaining or losing electrons. A cation (a positive ion) forms when a neutral atom loses one or more electrons from its valence shell, and an anion (a negative ion) forms when a neutral atom gains one or more electrons in its valence shell. For example, a neutral sodium atom (Z = 11) has 11 electrons. If this atom loses one electron, it will become a cation with a 1+ charge (11 − 10 = 1+). A neutral oxygen atom (Z = 8) has eight electrons, and if it gains two electrons it will become an anion with a 2− charge (8 − 10 = 2−).

Examples 6.1

Composition of an Atom

Iodine is an essential trace element in our diet; it is needed to produce thyroid hormone. Insufficient iodine in the diet can lead to the development of a goiter, an enlargement of the thyroid gland (Figure 6.3).

 

Figure A shows a photo of a person who has a very swollen thyroid in his or her neck. Figure B shows a photo of a canister of iodized salt.
Fig. 6.3 (a) Insufficient iodine in the diet can cause an enlargement of the thyroid gland called a goiter. (b) The addition of small amounts of iodine to salt, which prevents the formation of goiters, has helped eliminate this concern in the U.S., where salt consumption is high.

The addition of small amounts of iodine to table salt (iodized salt) has essentially eliminated this health concern in the United States, but as much as 40% of the world’s population is still at risk of iodine deficiency. The iodine atoms are added as anions, and each has a 1− charge, a mass number of 127, and the atomic number 53. Determine the numbers of protons, neutrons, and electrons in one of these iodine anions.

Solution

The atomic number of iodine (53) tells us that a neutral iodine atom contains 53 protons in its nucleus and 53 electrons outside its nucleus. Because the sum of the numbers of protons and neutrons equals the mass number, 127, the number of neutrons is 74 (127 − 53 = 74). Since the iodine is added as a 1− anion, the number of electrons is 54 [53 – (1–) = 54].

Check Your Learning: An ion of platinum has a mass number of 195 and contains 74 electrons. How many protons and neutrons does it contain, and what is its charge?

ANSWER: 78 protons; 117 neutrons; charge is 4+

 

Chemical Symbols and Formulas

A chemical symbol is an abbreviation that we use to indicate an element or an atom of an element. For example, the symbol for mercury is Hg (Figure 6.4). We use the same symbol to indicate one atom of mercury (microscopic domain) or to label a container of many atoms of the element mercury (macroscopic domain).

 

A jar labeled “Hg” is shown with a small amount of liquid mercury in it.
Fig. 6.4 The symbol Hg represents the element mercury regardless of the amount; it could represent one atom of mercury or a large amount of mercury.

The symbols for several common elements and their atoms are listed in Table 2.2. Some symbols are derived from the common name of the element; others are abbreviations of the name in another language. Most symbols have one or two letters, but three-letter symbols have been used to describe some elements that have atomic numbers greater than 112. To avoid confusion with other notations, only the first letter of a symbol is capitalized. For example, Co is the symbol for the element cobalt, but CO is the notation for the compound carbon monoxide, which contains atoms of the elements carbon (C) and oxygen (O). All known elements and their symbols are in the periodic table.

Some Common Elements and Their Symbols

Element

Symbol

Element

Symbol

aluminum

Al

iron

Fe (from ferrum)

bromine

Br

lead

Pb (from plumbum)

calcium

Ca

magnesium

Mg

carbon

C

mercury

Hg (from hydrargyrum)

chlorine

Cl

nitrogen

N

chromium

Cr

oxygen

O

cobalt

Co

potassium

K (from kalium)

copper

Cu (from cuprum)

silicon

Si

fluorine

F

silver

Ag (from argentum)

gold

Au (from aurum)

sodium

Na (from natrium)

helium

He

sulfur

S

hydrogen

H

tin

Sn (from stannum)

iodine

I

zinc

Zn

Table 6.2

Traditionally, the discoverer (or discoverers) of a new element names the element. However, until the name is recognized by the International Union of Pure and Applied Chemistry (IUPAC), the recommended name of the new element is based on the Latin word(s) for its atomic number. For example, element 106 was called unnilhexium (Unh), element 107 was called unnilseptium (Uns), and element 108 was called unniloctium (Uno) for several years. These elements are now named after scientists (or occasionally locations); for example, element 106 is now known as seaborgium (Sg) in honor of Glenn Seaborg, a Nobel Prize winner who was active in the discovery of several heavy elements.

Link to Learning

Visit the IUPAC, the International Union of Pure and Applied Chemistry, website to learn more and explore its periodic table listed here: IUPAC.

Isotopes

The symbol for a specific isotope of any element is written by placing the mass number as a superscript to the left of the element symbol (Figure 6.5). The atomic number is sometimes written as a subscript preceding the symbol, but since this number defines the element’s identity, as does its symbol, it is often omitted. For example, magnesium exists as a mixture of three isotopes, each with an atomic number of 12 and with mass numbers of 24, 25, and 26, respectively. These isotopes can be identified as 24Mg, 25Mg, and 26Mg. These isotope symbols are read as “element, mass number” and can be symbolized consistent with this reading. For instance, 24Mg is read as “magnesium 24,” and can be written as “magnesium-24” or “Mg-24.” 25Mg is read as “magnesium 25,” and can be written as “magnesium-25” or “Mg-25.” All magnesium atoms have 12 protons in their nucleus. They differ only because a 24Mg atom has 12 neutrons in its nucleus, a 25Mg atom has 13 neutrons, and a 26Mg has 14 neutrons.

 

This diagram shows the symbol for helium, “H e.” The number to the upper left of the symbol is the mass number, which is 4. The number to the upper right of the symbol is the charge which is positive 2. The number to the lower left of the symbol is the atomic number, which is 2. This number is often omitted. Also shown is “M g” which stands for magnesium It has a mass number of 24, a charge of positive 2, and an atomic number of 12.
Fig. 6.5 The symbol for an atom indicates the element via its usual two-letter symbol, the mass number as a left superscript, the atomic number as a left subscript (sometimes omitted), and the charge as a right superscript.

Link to Learning

Use this simulator to build atoms of the first 10 elements, see which isotopes exist, check nuclear stability, and gain experience with isotope symbols: PhET Build an Atom simulator.

Atomic Mass

Because each proton and each neutron contribute approximately one amu to the mass of an atom, and each electron contributes far less, the atomic mass of a single atom is approximately equal to its mass number (a whole number). However, the average masses of atoms of most elements are not whole numbers because most elements exist naturally as mixtures of two or more isotopes.

The mass of an element shown in a periodic table or listed in a table of atomic masses is a weighted, average mass of all the isotopes present in a naturally occurring sample of that element.

For example, the element boron is composed of two isotopes: About 19.9% of all boron atoms are 10B with a mass of 10.0129 amu, and the remaining 80.1% are 11B with a mass of 11.0093 amu. The average atomic mass is then calculated by multiplying the individual atomic masses of the isotopes to their respective percent abundances and adding their products together.

For boron, as 19.9% and 80.1% are equal to 0.199 and 0.801, we have

(10.0129 amu x 0.199) + (11.0093 amu x 0.801) = 10.8 amu

It is important to understand that no single boron atom weighs exactly 10.8 amu; 10.8 amu is the average mass of all boron atoms, and individual boron atoms weigh either approximately 10 amu or 11 amu.

Link to Learning

Use this simulation to make mixtures of the main isotopes of the first 18 elements, gain experience with average atomic mass, and check naturally occurring isotope ratios using the isotopes and atomic mass simulation: PhET Isotopes and Atomic Mass simulation.

The occurrence and natural abundances of isotopes can be experimentally determined using an instrument called a mass spectrometer. Mass spectrometry (MS) is widely used in chemistry, forensics, medicine, environmental science, and many other fields to analyze and help identify the substances in a sample of material. In a typical mass spectrometer (Figure 6.6), the sample is vaporized and exposed to a high-energy electron beam that causes the sample’s atoms (or molecules) to become electrically charged, typically by losing one or more electrons. These cations then pass through a (variable) electric or magnetic field that deflects each cation’s path to an extent that depends on both its mass and charge. The ions are detected, and a plot of the relative number of ions generated versus their mass-to-charge ratios (a mass spectrum) is made. The height of each vertical feature or peak in a mass spectrum is proportional to the fraction of cations with the specified mass-to-charge ratio. Since its initial use during the development of modern atomic theory, MS has evolved to become a powerful tool for chemical analysis in a wide range of applications.

 

The left diagram shows how a mass spectrometer works, which is primarily a large tube that bends downward at its midpoint. The sample enters on the left side of the tube. A heater heats the sample, causing it to vaporize. The sample is also hit with a beam of electrons as it is being vaporized. Charged particles from the sample, called ions, are then accelerated and pass between two magnets. The magnetic field deflects the lightest ions most. The deflection of the ions is measured by a detector located on the right side of the tube. The graph to the right of the spectrometer shows a mass spectrum of zirconium. The relative abundance, as a percentage from 0 to 100, is graphed on the y axis, and the mass to charge ratio is graphed on the x axis. The sample contains five different isomers of zirconium. Z R 90, which has a mass to charge ratio of 90, is the most abundant isotope at about 51 percent relative abundance. Z R 91 has a mass to charge ratio of 91 and a relative abundance of about 11 percent. Z R 92 has a mass to charge ratio of 92 and a relative abundance of about 18 percent. Z R 94 has a mass to charge ratio of 94 and a relative abundance of about 18 percent. Z R 96, which has a mass to charge ratio of 96, is the least abundant zirconium isotope with a relative abundance of about 2 percent.
Fig. 6.6 Analysis of zirconium in a mass spectrometer produces a mass spectrum with peaks showing the different isotopes of Zr.

Link to Learning

See this video from Bozeman Science that explains mass spectrometry: Mass Spectrometry. Watch this video from the Royal Society for Chemistry for a brief description of the rudiments of mass spectrometry: Mass Spectrometry MS.

Molecular, Structural, and Empirical Formulas

A molecular formula is a representation of a molecule that uses chemical symbols to indicate the types of atoms followed by subscripts to show the number of atoms of each type in the molecule. (A subscript is used only when more than one atom of a given type is present.) Molecular formulas are also used as abbreviations for the names of compounds.

The structural formula for a compound gives the same information as its molecular formula (the types and numbers of atoms in the molecule) but also shows how the atoms are connected in the molecule. The structural formula for methane contains symbols for one C atom and four H atoms, indicating the number of atoms in the molecule (Fig. 6.7).  The lines represent bonds that hold the atoms together. (A chemical bond is an attraction between atoms or ions that holds them together in a molecule or a crystal.) We will discuss chemical bonds and see how to predict the arrangement of atoms in a molecule later. For now, simply know that the lines are an indication of how the atoms are connected in a molecule. A ball-and-stick model shows the geometric arrangement of the atoms with atomic sizes not to scale, and a space-filling model shows the relative sizes of the atoms.

 

Figure A shows C H subscript 4. Figure B shows a carbon atom that is bonded to four hydrogen atoms at right angles: one above, one to the left, one to the right, and one below. Figure C shows a 3-D, ball-and-stick model of the carbon atom bonded to four hydrogen atoms. Figure D shows a space-filling model of a carbon atom with hydrogen atoms partially embedded into the surface of the carbon atom.
Fig. 6.7 A methane molecule can be represented as (a) a molecular formula, (b) a structural formula, (c) a ball-and-stick model, and (d) a space-filling model. Carbon and hydrogen atoms are represented by black and white spheres, respectively.

Although many elements consist of discrete, individual atoms, some exist as molecules made up of two or more atoms of the element chemically bonded together. For example, most samples of the elements hydrogen, oxygen, and nitrogen are composed of molecules that contain two atoms each (called diatomic molecules) and thus have the molecular formulas H2, O2, and N2, respectively. Other elements commonly found as diatomic molecules are fluorine (F2), chlorine (Cl2), bromine (Br2), and iodine (I2). The most common form of the element sulfur is composed of molecules that consist of eight atoms of sulfur; its molecular formula is S8.

It is important to note that a subscript following a symbol and a number in front of a symbol do not represent the same thing; for example, H2 and 2H represent distinctly different species. H2 is a molecular formula; it represents a diatomic molecule of hydrogen, consisting of two atoms of the element that are chemically bonded together. The expression 2H, on the other hand, indicates two separate hydrogen atoms that are not combined as a unit. The expression 2H2 represents two molecules of diatomic hydrogen (Fig. 6.8).

 

This figure shows four diagrams. The diagram for H shows a single, white sphere and is labeled one H atom. The diagram for 2 H shows two white spheres that are not bonded together. It is labeled 2 H atoms. The diagram for H subscript 2 shows two white spheres bonded together. It is labeled one H subscript 2 molecule. The diagram for 2 H subscript 2 shows two sets of bonded, white spheres. It is labeled 2 H subscript 2 molecules.
Fig. 6.8 The symbols H, 2H, H2, and 2H2 represent very different entities.

Compounds are formed when two or more elements chemically combine, resulting in the formation of bonds. For example, hydrogen and oxygen can react to form water, and sodium and chlorine can react to form table salt. We sometimes describe the composition of these compounds with an empirical formula, which indicates the types of atoms present and the simplest whole-number ratio of the number of atoms (or ions) in the compound. For example, titanium dioxide (used as pigment in white paint and in the thick, white, blocking type of sunscreen) has an empirical formula of TiO2. This identifies the elements titanium (Ti) and oxygen (O) as the constituents of titanium dioxide, and indicates the presence of twice as many atoms of the element oxygen as atoms of the element titanium.

As discussed previously, we can describe a compound with a molecular formula, in which the subscripts indicate the actual numbers of atoms of each element in a molecule of the compound. In many cases, the molecular formula of a substance is derived from experimental determination of both its empirical formula and its molecular mass (the sum of atomic masses for all atoms composing the molecule).

It is important to be aware that it may be possible for the same atoms to be arranged in different ways: Compounds with the same molecular formula may have different atom-to-atom bonding and therefore different structures. Compounds with the same chemical formula but different molecular structures are called isomers.

The Periodic Table

As early chemists worked to purify ores and discovered more elements, they realized that various elements could be grouped together by their similar chemical behaviors. One such grouping includes lithium (Li), sodium (Na), and potassium (K): These elements all are shiny, conduct heat and electricity well, and have similar chemical properties. A second grouping includes calcium (Ca), strontium (Sr), and barium (Ba), which also are shiny, good conductors of heat and electricity, and have chemical properties in common. However, the specific properties of these two groupings are notably different from each other. For example: Li, Na, and K are much more reactive than are Ca, Sr, and Ba; Li, Na, and K form compounds with oxygen in a ratio of two of their atoms to one oxygen atom, whereas Ca, Sr, and Ba form compounds with one of their atoms to one oxygen atom. Fluorine (F), chlorine (Cl), bromine (Br), and iodine (I) also exhibit similar properties to each other but these properties are drastically different from those of any of the elements above.

Dimitri Mendeleev in Russia (1869) and Lothar Meyer in Germany (1870) independently recognized that there was a periodic relationship among the properties of the elements known at that time. Both published tables with the elements arranged according to increasing atomic mass. But Mendeleev went one step further than Meyer: He used his table to predict the existence of elements that would have the properties similar to aluminum and silicon, but were yet unknown. The discoveries of gallium (1875) and germanium (1886) provided great support for Mendeleev’s work. Although Mendeleev and Meyer had a long dispute over priority, Mendeleev’s contributions to the development of the periodic table are now more widely recognized.

By the twentieth century, it became apparent that the periodic relationship involved atomic numbers rather than atomic masses. The modern statement of this relationship, the periodic law, is as follows: the properties of the elements are periodic functions of their atomic numbers. A modern periodic table arranges the elements in increasing order of their atomic numbers and groups atoms with similar properties in the same vertical column (Figure 6.9). Each box represents an element and contains its atomic number, symbol, average atomic mass, and (sometimes) name. The elements are arranged in seven horizontal rows, called periods or series, and 18 vertical columns, called groups. Groups are labeled at the top of each column. In the United States, the labels traditionally were numerals with capital letters. However, IUPAC recommends that the numbers 1 through 18 be used, and these labels are more common. For the table to fit on a single page, parts of two of the rows, a total of 14 columns, are usually written below the main body of the table.

 

The Periodic Table of Elements is shown. The 18 columns are labeled “Group” and the 7 rows are labeled “Period.” Below the table to the right is a box labeled “Color Code” with different colors for metals, metalloids, and nonmetals, as well as solids, liquids, and gases. To the left of this box is an enlarged picture of the upper-left most box on the table. The number 1 is in its upper-left hand corner and is labeled “Atomic number.” The letter “H” is in the middle in red indicating that it is a gas. It is labeled “Symbol.” Below that is the number 1.008 which is labeled “Atomic Mass.” Below that is the word hydrogen which is labeled “name.” The color of the box indicates that it is a nonmetal. Each element will be described in this order: atomic number; name; symbol; whether it is a metal, metalloid, or nonmetal; whether it is a solid, liquid, or gas; and atomic mass. Beginning at the top left of the table, or period 1, group 1, is a box containing “1; hydrogen; H; nonmetal; gas; and 1.008.” There is only one other element box in period 1, group 18, which contains “2; helium; H e; nonmetal; gas; and 4.003.” Period 2, group 1 contains “3; lithium; L i; metal; solid; and 6.94” Group 2 contains “4; beryllium; B e; metal; solid; and 9.012.” Groups 3 through 12 are skipped and group 13 contains “5; boron; B; metalloid; solid; 10.81.” Group 14 contains “6; carbon; C; nonmetal; solid; and 12.01.” Group 15 contains “7; nitrogen; N; nonmetal; gas; and 14.01.” Group 16 contains “8; oxygen; O; nonmetal; gas; and 16.00.” Group 17 contains “9; fluorine; F; nonmetal; gas; and 19.00.” Group 18 contains “10; neon; N e; nonmetal; gas; and 20.18.” Period 3, group 1 contains “11; sodium; N a; metal; solid; and 22.99.” Group 2 contains “12; magnesium; M g; metal; solid; and 24.31.” Groups 3 through 12 are skipped again in period 3 and group 13 contains “13; aluminum; A l; metal; solid; and 26.98.” Group 14 contains “14; silicon; S i; metalloid; solid; and 28.09.” Group 15 contains “15; phosphorous; P; nonmetal; solid; and 30.97.” Group 16 contains “16; sulfur; S; nonmetal; solid; and 32.06.” Group 17 contains “17; chlorine; C l; nonmetal; gas; and 35.45.” Group 18 contains “18; argon; A r; nonmetal; gas; and 39.95.” Period 4, group 1 contains “19; potassium; K; metal; solid; and 39.10.” Group 2 contains “20; calcium; C a; metal; solid; and 40.08.” Group 3 contains “21; scandium; S c; metal; solid; and 44.96.” Group 4 contains “22; titanium; T i; metal; solid; and 47.87.” Group 5 contains “23; vanadium; V; metal; solid; and 50.94.” Group 6 contains “24; chromium; C r; metal; solid; and 52.00.” Group 7 contains “25; manganese; M n; metal; solid; and 54.94.” Group 8 contains “26; iron; F e; metal; solid; and 55.85.” Group 9 contains “27; cobalt; C o; metal; solid; and 58.93.” Group 10 contains “28; nickel; N i; metal; solid; and 58.69.” Group 11 contains “29; copper; C u; metal; solid; and 63.55.” Group 12 contains “30; zinc; Z n; metal; solid; and 65.38.” Group 13 contains “31; gallium; G a; metal; solid; and 69.72.” Group 14 contains “32; germanium; G e; metalloid; solid; and 72.63.” Group 15 contains “33; arsenic; A s; metalloid; solid; and 74.92.” Group 16 contains “34; selenium; S e; nonmetal; solid; and 78.97.” Group 17 contains “35; bromine; B r; nonmetal; liquid; and 79.90.” Group 18 contains “36; krypton; K r; nonmetal; gas; and 83.80.” Period 5, group 1 contains “37; rubidium; R b; metal; solid; and 85.47.” Group 2 contains “38; strontium; S r; metal; solid; and 87.62.” Group 3 contains “39; yttrium; Y; metal; solid; and 88.91.” Group 4 contains “40; zirconium; Z r; metal; solid; and 91.22.” Group 5 contains “41; niobium; N b; metal; solid; and 92.91.” Group 6 contains “42; molybdenum; M o; metal; solid; and 95.95.” Group 7 contains “43; technetium; T c; metal; solid; and 97.” Group 8 contains “44; ruthenium; R u; metal; solid; and 101.1.” Group 9 contains “45; rhodium; R h; metal; solid; and 102.9.” Group 10 contains “46; palladium; P d; metal; solid; and 106.4.” Group 11 contains “47; silver; A g; metal; solid; and 107.9.” Group 12 contains “48; cadmium; C d; metal; solid; and 112.4.” Group 13 contains “49; indium; I n; metal; solid; and 114.8.” Group 14 contains “50; tin; S n; metal; solid; and 118.7.” Group 15 contains “51; antimony; S b; metalloid; solid; and 121.8.” Group 16 contains “52; tellurium; T e; metalloid; solid; and 127.6.” Group 17 contains “53; iodine; I; nonmetal; solid; and 126.9.” Group 18 contains “54; xenon; X e; nonmetal; gas; and 131.3.” Period 6, group 1 contains “55; cesium; C s; metal; solid; and 132.9.” Group 2 contains “56; barium; B a; metal; solid; and 137.3.” Group 3 breaks the pattern. The box has a large arrow pointing to a row of elements below the table with atomic numbers ranging from 57-71. In sequential order by atomic number, the first box in this row contains “57; lanthanum; L a; metal; solid; and 138.9.” To its right, the next is “58; cerium; C e; metal; solid; and 140.1.” Next is “59; praseodymium; P r; metal; solid; and 140.9.” Next is “60; neodymium; N d; metal; solid; and 144.2.” Next is “61; promethium; P m; metal; solid; and 145.” Next is “62; samarium; S m; metal; solid; and 150.4.” Next is “63; europium; E u; metal; solid; and 152.0.” Next is “64; gadolinium; G d; metal; solid; and 157.3.” Next is “65; terbium; T b; metal; solid; and 158.9.” Next is “66; dysprosium; D y; metal; solid; and 162.5.” Next is “67; holmium; H o; metal; solid; and 164.9.” Next is “68; erbium; E r; metal; solid; and 167.3.” Next is “69; thulium; T m; metal; solid; and 168.9.” Next is “70; ytterbium; Y b; metal; solid; and 173.1.” The last in this special row is “71; lutetium; L u; metal; solid; and 175.0.” Continuing in period 6, group 4 contains “72; hafnium; H f; metal; solid; and 178.5.” Group 5 contains “73; tantalum; T a; metal; solid; and 180.9.” Group 6 contains “74; tungsten; W; metal; solid; and 183.8.” Group 7 contains “75; rhenium; R e; metal; solid; and 186.2.” Group 8 contains “76; osmium; O s; metal; solid; and 190.2.” Group 9 contains “77; iridium; I r; metal; solid; and 192.2.” Group 10 contains “78; platinum; P t; metal; solid; and 195.1.” Group 11 contains “79; gold; A u; metal; solid; and 197.0.” Group 12 contains “80; mercury; H g; metal; liquid; and 200.6.” Group 13 contains “81; thallium; T l; metal; solid; and 204.4.” Group 14 contains “82; lead; P b; metal; solid; and 207.2.” Group 15 contains “83; bismuth; B i; metal; solid; and 209.0.” Group 16 contains “84; polonium; P o; metal; solid; and 209.” Group 17 contains “85; astatine; A t; metalloid; solid; and 210.” Group 18 contains “86; radon; R n; nonmetal; gas; and 222.” Period 7, group 1 contains “87; francium; F r; metal; solid; and 223.” Group 2 contains “88; radium; R a; metal; solid; and 226.” Group 3 breaks the pattern much like what occurs in period 6. A large arrow points from the box in period 7, group 3 to a special row containing the elements with atomic numbers ranging from 89-103, just below the row which contains atomic numbers 57-71. In sequential order by atomic number, the first box in this row contains “89; actinium; A c; metal; solid; and 227.” To its right, the next is “90; thorium; T h; metal; solid; and 232.0.” Next is “91; protactinium; P a; metal; solid; and 231.0.” Next is “92; uranium; U; metal; solid; and 238.0.” Next is “93; neptunium; N p; metal; solid; and N p.” Next is “94; plutonium; P u; metal; solid; and 244.” Next is “95; americium; A m; metal; solid; and 243.” Next is “96; curium; C m; metal; solid; and 247.” Next is “97; berkelium; B k; metal; solid; and 247.” Next is “98; californium; C f; metal; solid; and 251.” Next is “99; einsteinium; E s; metal; solid; and 252.” Next is “100; fermium; F m; metal; solid; and 257.” Next is “101; mendelevium; M d; metal; solid; and 258.” Next is “102; nobelium; N o; metal; solid; and 259.” The last in this special row is “103; lawrencium; L r; metal; solid; and 262.” Continuing in period 7, group 4 contains “104; rutherfordium; R f; metal; solid; and 267.” Group 5 contains “105; dubnium; D b; metal; solid; and 270.” Group 6 contains “106; seaborgium; S g; metal; solid; and 271.” Group 7 contains “107; bohrium; B h; metal; solid; and 270.” Group 8 contains “108; hassium; H s; metal; solid; and 277.” Group 9 contains “109; meitnerium; M t; not indicated; solid; and 276.” Group 10 contains “110; darmstadtium; D s; not indicated; solid; and 281.” Group 11 contains “111; roentgenium; R g; not indicated; solid; and 282.” Group 12 contains “112; copernicium; C n; metal; liquid; and 285.” Group 13 contains “113; ununtrium; U u t; not indicated; solid; and 285.” Group 14 contains “114; flerovium; F l; not indicated; solid; and 289.” Group 15 contains “115; ununpentium; U u p; not indicated; solid; and 288.” Group 16 contains “116; livermorium; L v; not indicated; solid; and 293.” Group 17 contains “117; ununseptium; U u s; not indicated; solid; and 294.” Group 18 contains “118; ununoctium; U u o; not indicated; solid; and 294.”
Fig. 6.9 Elements in the periodic table are organized according to their properties.

 

Even after the periodic nature of elements and the table itself were widely accepted, gaps remained. Mendeleev had predicted, and others including Henry Moseley had later confirmed, that there should be elements below Manganese in Group 7. German chemists Ida Tacke and Walter Noddack set out to find the elements, a quest being pursued by scientists around the world. Their method was unique in that they did not only consider the properties of manganese, but also the elements horizontally adjacent to the missing elements 43 and 75 on the table. Thus, by investigating ores containing minerals of ruthenium (Ru), tungsten (W), osmium (Os), and so on, they were able to identify naturally occurring elements that helped complete the table. Rhenium, one of their discoveries, was one of the last natural elements to be discovered and is the last stable element to be discovered. (Francium, the last natural element to be discovered, was identified by Marguerite Perey in 1939.)

Many elements differ dramatically in their chemical and physical properties, but some elements are similar in their behaviors. For example, many elements appear shiny, are malleable (able to be deformed without breaking) and ductile (can be drawn into wires), and conduct heat and electricity well. Other elements are not shiny, malleable, or ductile, and are poor conductors of heat and electricity. We can sort the elements into large classes with common properties: metals (elements that are shiny, malleable, good conductors of heat and electricity—shaded yellow); nonmetals (elements that appear dull, poor conductors of heat and electricity—shaded green); and metalloids (elements that conduct heat and electricity moderately well and possess some properties of metals and some properties of nonmetals—shaded purple).

The elements can also be classified into the main-group elements (or representative elements) in the columns labeled 1, 2, and 13–18; the transition metals in the columns labeled 3–12; and inner transition metals in the two rows at the bottom of the table (the top-row elements are called lanthanides and the bottom-row elements are actinides.)

Electron Structure of Atoms and the Aufbau Principle

Electrons in successive atoms on the periodic table tend to fill low-energy orbitals first. The arrangement of electrons in the orbitals of an atom is called the electron configuration of the atom.

To determine the electron configuration for any particular atom, we can “build” the structures in the order of atomic numbers. Beginning with hydrogen, and continuing across the periods of the periodic table, we add one proton at a time to the nucleus and one electron to the proper subshell until we have described the electron configurations of all the elements. This procedure is called the Aufbau principle, from the German word Aufbau (“to build up”). Each added electron occupies the subshell of lowest energy available. Electrons enter higher-energy subshells only after lower-energy subshells have been filled to capacity.

Electron Configurations and the Periodic Table

The periodic table arranges atoms based on increasing atomic number so that elements with the same chemical properties recur periodically.  Because they are in the outer shells of an atom, valence electrons play the most important role in chemical reactions (Figure 6.10). The outer electrons have the highest energy of the electrons in an atom and are more easily lost or shared than the core electrons. Valence electrons are also the determining factor in some physical properties of the elements.

 

Image is a Bohr model of the element Sodium. In the center is a yellow circle marked Na. There are 3 co-centric rings around the yellow circle marked Na. These are labeled 1, 2, and 3, and smaller circles mark the electron positions on each ring. To the lower left, is a color key denoting s for the smaller blue circles and p for the green smaller circles.
Fig. 6.10 A Bohr model of an atom of sodium (Na) illustrating core electrons at lower energy levels (which are shells closer to the nucleus) and its single valence electron at its outermost (3rd) shell.

Elements in any one group (or column) have the same number of valence electrons; the alkali metals lithium and sodium each have only one valence electron, the alkaline earth metals beryllium and magnesium each have two, and the halogens fluorine and chlorine each have seven valence electrons. The similarity in chemical properties among elements of the same group occurs because they have the same number of valence electrons. It is the loss, gain, or sharing of valence electrons that defines how elements react.

It is important to remember that the periodic table was developed on the basis of the chemical behavior of the elements, well before any idea of their atomic structure was available. Now we can understand why the periodic table has the arrangement it has—the arrangement puts elements whose atoms have the same number of valence electrons in the same group.

Check Your Understanding

The content in this chapter  is adapted from multiple sources. The overall chapter structure and the section on the nature of science is adapted from Exploring the Physical World and used under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The sections on atomic theory and structure, chemical symbols and formulas, and the periodic table are adapted from Chemistry 2e by OpenStax and is used under a Creative Commons-Attribution 4.0 International License. Other content and interactive activities are the original work of the authors of this text and are shared under a Creative Commons-Attribution 4.0 International License.

 

 

 

Media Attributions

definition