"

Chapter 5: Equations and Identities

Exercises: 5.3 Trigonometric Identities

                              Skills

Practice each skill in the Homework Problems listed:

  1. Recognize identities
  2. Verify identities
  3. Rewrite expressions using identities
  4. Use identities to evaluate expressions
  5. Solve trigonometric equations
  6. Given one trig ratio, find the others

 

Suggested Problems

Problems: #4, 8, 16, 44, 22, 24, 74, 28, 32, 50, 36, 58, 60, 70

Exercises Homework 5.3

Exercise Group

For Problems 1–8, decide which of the following equations are identities. Explain your reasoning.

1.

(a+b)2=a+b

2.

a2b2=ab

3.

1a+b=1a+1b

4.

a+ba=b

5.

tan(α+β)=sin(α+β)cos(α+β)

6.

1tanθ=cosθsinθ

7.

(1+tanθ)2=1+tan2θ

8.

1sin2ϕ=1sinϕ

Exercise Group

For Problems 9–16, use graphs to decide which of the following equations are identities.

9.

sin2t=2sint

10.

cosθ+sinθ=1

11.

sin(30°+β)=12+sinβ

12.

cos(90°C)=sinC

13.

tan(90°θ)=1tanθ

14.

tan2θ=2tanθ1tan2θ

15.

tan2x1+tan2x=sin2x

16.

tanx+1tanx=sinxcosx

Exercise Group

For Problems 17–26, show that the equation is an identity by transforming the left side into the right side.

17.

(1+sinw)(1sinw)=cos2w

18.

(cosθ1)(cosθ+1)=sin2θ

19.

(cosθsinθ)2=12sinθcosθ

20.

sin2xcos2x=12cos2x

21.

tanθcosθ=sinθ

22.

sinμtanμ=cosμ

23.

cos4xsin4x=cos2xsin2x

24.

12cos2v+cos4v=sin4v

25.

sinu1+cosu=1cosusinu

Hint.

Multiply numerator and denominator of the left side by 1cosu.

26.

sinv1cosv=tanv(1+sinv)cosv

Hint.

Multiply numerator and denominator of the left side by 1+sinv.

Exercise Group

For Problems 27–34, simplify, using identities as necessary.

27.

1cos2βsin2βcos2β

28.

1sin2ϕ1tan2ϕ

29.

cos2α(1+tan2α)

30.

cos3ϕ+sin2ϕcosϕ

31.

tan2Atan2Asin2A

32.

cos2Btan2B+cos2B

33.

1cos2zcos2z

34.

sintcosttant

Exercise Group

For Problems 35–40, evaluate without using a calculator.

35.

3cos21.7°+3sin21.7°

36.

4cos2338°sin2338°

37.

(cos220°+sin220°)4

38.

18cos217°+sin217°

39.

6cos253°6tan253°

40.

1sin2102°cos2102°sin2102°

Exercise Group

For Problems 41–46, one side of an identity is given. Graph the expression and make a conjecture about the other side of the identity.

41.

2cos2θ1=?

42.

12sin2(θ2)=?

43.

1sin2x1+cosx=?

44.

sinx1sin2x=?

45.

2tantcos2t=?

46.

2tant1tan2t=?

Exercise Group

For Problems 47–50, use identities to rewrite each expression.

47.

2cos2θ+2sinθ    as an expression in sinθ only

48.

3sin2B+2cosB4    as an expression in cosB only

49.

cos2ϕ2sin2ϕ    as an expression in cosϕ only

50.

cos2ϕsin2ϕ    as an expression in sinϕ only

Exercise Group

For Problems 51–58, solve the equation for 0°θ360°. Round angles to three decimal places if necessary.

51.

cosθsin2θ+1=0

52.

4sinθ+2cos2θ3=1

53.

1sinθ2cos2θ=0

54.

3cos2θsin2θ=2

55.

2cosθtanθ+1=0

56.

cosθsinθ=0

57.

13cosθ=sinθ

58.

5sinC=2cosC

Exercise Group

For Problems 59–62, use identities to find exact values for the other two trig ratios.

59.

cosA=1213    and  270°< A<360°

60.

sinB=35    and  180°< B<270°

61.

sinϕ=17    and  90°< ϕ<180°

62.

cost=23    and  180°< t<270°

Exercise Group

For Problems 63–66, use the identity below to find the sine and cosine of the angle.
1+tan2θ=1cos2θ

63.

tanθ=12    and  270°< θ<360°

64.

tanθ=2    and  180°< θ<270°

65.

tanθ=34    and  180°< θ<270°

66.

tanθ=3    and  90°< θ<180°

Exercise Group

For Problems 67–72, find exact values for the sine, cosine, and tangent of the angle.

67.

2cosA+9=8    and  90°< A<180°

68.

25sinB+8=12    and  180°< B<270°

69.

8tanβ+5=11    and  90°< β<180°

70.

6(tanβ4)=24    and  90°< β<270°

71.

tan2C14=0    and  0°< C<180°

72.

4cos2AcosA=0    and  00°< A<180°

Exercise Group

For Problems 73–76, prove the identity by rewriting tangents in terms of sines and cosines. (These problems involve simplifying complex fractions. See the Algebra Refresher to review this skill.)

73.

tanα1+tanα=sinαsinα+cosα

74.

1tanu1+tanu=cosusinucosu+sinu

75.

1+tan2β1tan2β=1cos2βsin2β

76.

tan2vsin2v=tan2vsin2v

77.

Prove the Pythagorean identity cos2θ+sin2θ=1 by carrying out the following steps. Sketch an angle θ in standard position and label a point (x,y) on the terminal side, at a distance r from the vertex.

  1. Begin with the equation x2+y2=r, and square both sides.
  2. Divide both sides of your equation from part (a) by r2.
  3. Write the left side of the equation as the sum of the squares of two fractions.
  4. Substitute the appropriate trigonometric ratio for each fraction.

78.

Prove the tangent identity tanθ=sinθcosθ by carrying out the following steps. Sketch an angle θ in standard position and label a point (x,y) on the terminal side, at a distance r from the vertex.

  1. Write sinθ in terms of y and r, and solve for y.
  2. Write cosθ in terms of x and r, and solve for x.
  3. Write tanθ in terms of x and y, then substitute your results from parts (a) and (b).
  4. Simplify your fraction in part (c).

 

 

License

Icon for the Creative Commons Attribution-ShareAlike 4.0 International License

Trigonometry Copyright © 2024 by LOUIS: The Louisiana Library Network is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License, except where otherwise noted.