[latex]\text{secant}:~~~~~~ {\sec \theta = \dfrac{r}{x}}[/latex]
[latex]\text{cosecant}:~~~~ {\csc \theta = \dfrac{r}{y}}[/latex]
[latex]\text{cotangent}:~~~ {\cot \theta = \dfrac{x}{y}}[/latex]
Chapter 8: More Functions and Identities
Review the following skills you will need for this section.
Learning Objectives
The three basic trigonometric functions occur so often as the denominator of a fraction that it is convenient to give names to their reciprocals. We define three new trigonometric functions as follows.
We can find exact values for all six trig functions at a given angle if we know the value of any one of them.
If [latex]\sec \theta = 3{,}[/latex] and [latex]-\dfrac{\pi}{2} \le \theta \le 0{,}[/latex] find exact values for the other five trig functions.
Because [latex]-\dfrac{\pi}{2} \le \theta \le 0{,}[/latex] we draw a reference triangle in the fourth quadrant, as shown at right. Because [latex]\sec \theta = 3 = \dfrac{3}{1}{,}[/latex] we label the horizontal leg with [latex]x=1[/latex] and the hypotenuse with [latex]r=3{.}[/latex]
From the Pythagorean theorem, we find [latex]y=-\sqrt{8}=-2\sqrt{2}{.}[/latex] We can now compute the values of the six trigonometric ratios.
[latex]\cos \theta =\dfrac{x}{r}=\dfrac{1}{3}[/latex] | [latex]\sec \theta =\dfrac{r}{x}=\dfrac{3}{1}=3[/latex] |
[latex]\sin \theta =\dfrac{y}{r}=\dfrac{-2\sqrt{2}}{3}[/latex] | [latex]\csc \theta =\dfrac{r}{y}=\dfrac{3}{-2\sqrt{2}}=\dfrac{-3\sqrt{2}}{4}[/latex] |
[latex]\tan \theta =\dfrac{y}{x}=\dfrac{-2\sqrt{2}}{1}=-2\sqrt{2}[/latex] | [latex]\cot \theta =\dfrac{x}{y}=\dfrac{1}{-2\sqrt{2}}=\dfrac{-\sqrt{2}}{4}[/latex] |
If [latex]\csc \theta =4{,}[/latex] and [latex]90° \le \theta \le 180°{,}[/latex] find exact values for the other five trig functions.
[latex]\cos \theta = \dfrac{-\sqrt{15}}{4}{,}[/latex] [latex]~\sin \theta = \dfrac{1}{4}{,}[/latex] [latex]~\tan \theta = \dfrac{-1}{\sqrt{15}}{,}[/latex] [latex]~\sec \theta = \dfrac{-4}{\sqrt{15}}{,}[/latex] [latex]~\cot \theta = -\sqrt{15}[/latex]
[latex]{\sec \theta = \dfrac{1}{\cos \theta}} \qquad ~~~~ {\csc \theta = \dfrac{1}{\sin \theta}}\\ \qquad ~~~ {\cot \theta = \dfrac{1}{\tan \theta}}[/latex]
Calculators do not have keys for the secant, cosecant, and cotangent functions; instead, we calculate their values as reciprocals.
Use a calculator to approximate [latex]\sec 47°[/latex] to three decimal places.
With the calculator in degree mode, enter
[latex]\qquad\qquad\qquad[/latex] 1 ÷ COS 47 ) ENTER
to obtain [latex]\sec 47° \approx 1.466{.}[/latex] Or we can calculate [latex]\cos 47°[/latex] first, and then use the reciprocal key:
[latex]\qquad\qquad\qquad[/latex]COS 47 ) ENTER [latex]\small\boxed{x^{-1}}[/latex] ENTER
Use a calculator to approximate [latex]\csc 132°[/latex] to three decimal places.
[latex]1.346[/latex]
Exact Values for the Special Angles | |||
[latex]\theta[/latex] | [latex]\sec \theta[/latex] | [latex]\sec \theta[/latex] | [latex]\cot \theta[/latex] |
[latex]0[/latex] | [latex]1[/latex] | [latex]\text{undefined}[/latex] | [latex]\text{undefined}[/latex] |
[latex]\dfrac{\pi}{6}[/latex] | [latex]\dfrac{2\sqrt{3}}{3}[/latex] | [latex]2[/latex] | [latex]\sqrt{3}[/latex] |
[latex]\dfrac{\pi}{4}[/latex] | [latex]\sqrt{2}[/latex] | [latex]\sqrt{2}[/latex] | [latex]1[/latex] |
[latex]\dfrac{\pi}{3}[/latex] | [latex]2[/latex] | [latex]\dfrac{2\sqrt{3}}{3}[/latex] | [latex]\dfrac{1}{\sqrt{3}}[/latex] |
[latex]\dfrac{\pi}{2}[/latex] | [latex]\text{undefined}[/latex] | [latex]1[/latex] | [latex]0[/latex] |
The reciprocal functions are not the same as the inverse trig functions!
For example, [latex]\sec 0.8[/latex] is not equal to [latex]\cos^{-1}(0.8){.}[/latex] Remember that [latex]~{\cos^{-1}(0.8)}~[/latex] is an angle; namely, the angle whose cosine is 0.8, while [latex]~{\sec 0.8}~[/latex] is the reciprocal of the cosine of 0.8 radians, or [latex]\dfrac{1}{\cos 0.8}{.}[/latex] You can check on your calculator that
[latex]\cos^{-1}(0.8)=0.6435~\text{ radians },~~~~\text{ and }~~~~\sec 0.8=1.4353[/latex]
Each of the reciprocal functions is undefined when its denominator is equal to zero. For example, the secant is undefined when [latex]\cos \theta = 0{,}[/latex] or when [latex]\theta[/latex] is an odd multiple of [latex]90°{.}[/latex]
For which angles is the cosecant undefined?
The cosecant is undefined when its denominator, [latex]\sin \theta{,}[/latex] equals zero, and [latex]\sin \theta = 0[/latex] when [latex]\theta[/latex] is a multiple of [latex]180°{.}[/latex] In radians, [latex]\csc \theta[/latex] is undefined if [latex]\theta[/latex] is a multiple of [latex]\pi{.}[/latex]
For what angles is the cotangent undefined? Give your answers in degrees and in radians.
Multiples of [latex]180°{,}[/latex] or multiples of [latex]\pi{.}[/latex]
Although [latex]\tan \dfrac{\pi}{2}[/latex] is undefined, [latex]\cot \dfrac{\pi}{2}=0{.}[/latex]
In Chapter 2 we defined three trigonometric ratios for an acute angle; namely, sine, cosine, and tangent. When we take the reciprocals of those ratios, we obtain expressions for the secant, cosecant, and cotangent.
Although we can express any relationship between the sides of a right triangle using sine, cosine, and tangent, sometimes it is more convenient to use one of the reciprocal functions.
The length, [latex]L{,}[/latex] of the shadow cast by a flagpole on a sunny day depends on the height, [latex]h{,}[/latex] of the flagpole and the angle, [latex]\theta{,}[/latex] that the sun’s rays make with ground.
The area [latex]A[/latex] of a regular polygon with [latex]n[/latex] sides having perimeter [latex]L[/latex] satisfies
[latex]A = \dfrac{L^2}{4n}\cot\dfrac{\pi}{n}[/latex]
Refer to the figure at right showing [latex]n=6[/latex] to prove this formula in the following steps.
We can obtain graphs of the reciprocal trig functions by plotting points, as we did for the sine, cosine, and tangent functions. However, it is more enlightening to construct these graphs as the reciprocals of the three basic functions.
Use the graph of [latex]y=\cos x[/latex] to construct a graph of [latex]f(x)=\sec x{.}[/latex]
Consider the graph of [latex]y=\cos x[/latex] shown at left below. When [latex]x=\dfrac{-\pi}{2},~\dfrac{\pi}{2}[/latex] and [latex]\dfrac{3\pi}{2},~ \cos x=0{,}[/latex] so [latex]\sec x[/latex] is undefined at these [latex]x[/latex]-values, and we insert vertical asymptotes at those [latex]x[/latex]-values to start our graph of [latex]y=\sec x{,}[/latex] as shown at right below.
To find some points on the graph, we look at points on the graph of [latex]y=\cos x{.}[/latex] At each [latex]x[/latex]-value, the [latex]y[/latex]-coordinate of the point on the graph of [latex]y=\sec x[/latex] is the reciprocal of [latex]\cos x{.}[/latex]
For example, at [latex]x=0[/latex] and [latex]x=2\pi{,}[/latex] we have [latex]\cos x = 1{,}[/latex] so [latex]\sec x = \frac{1}{1} = 1{.}[/latex] Thus, we plot the points [latex](0,1)[/latex] and [latex](2\pi,1)[/latex] on the graph of [latex]f(x)=\sec x{.}[/latex] Similarly, at [latex]x=-\pi[/latex] and [latex]x=\pi{,}[/latex] [latex]\cos x = -1{,}[/latex] so the value of [latex]\sec x[/latex] is [latex]\frac{1}{-1} = -1{,}[/latex] and we plot the points [latex](-\pi,-1)[/latex] and [latex](\pi,-1)[/latex] on the graph of [latex]f(x)=\sec x{.}[/latex]
Finally, we notice that the values of [latex]\cos x[/latex] are decreasing toward [latex]0[/latex] as [latex]x[/latex] increases from [latex]0[/latex] to [latex]\dfrac{\pi}{2}{,}[/latex] so the graph of [latex]f(x)=\sec x[/latex] increases toward [latex]\infty[/latex] on the same interval. By similar arguments, we fill in the graph of [latex]f(x)=\sec x[/latex] between each of the vertical asymptotes to produce the graph below.
Use the graph of [latex]y=\tan x[/latex] to sketch a graph of [latex]g(x)=\cot x{.}[/latex]
The graphs of the three new functions are shown below, with [latex]x[/latex] in radians. Note that the secant function is undefined at odd multiples of [latex]\dfrac{\pi}{2}{,}[/latex] the values at which [latex]\cos x=0{.}[/latex] The cosecant is undefined where [latex]\sin x=0{;}[/latex] namely, at multiples of [latex]\pi{.}[/latex] The cotangent is also undefined at multiples of [latex]\pi{,}[/latex] because [latex]\tan x=0[/latex] at those values.
State the domain and range of the secant function.
Because the cosine is defined for all real numbers, the domain of the secant includes all real numbers except for values where the cosine is zero. These values are the odd multiples of [latex]\dfrac{\pi}{2}{;}[/latex] that is, [latex]\dfrac{\pi}{2},~\dfrac{3\pi}{2},~\dfrac{5\pi}{2},~ \ldots{,}[/latex] and their opposites. Because the range of the cosine consists of all [latex]y[/latex]-values with [latex]-1 \le y \le 1{,}[/latex] the range of the secant includes the reciprocals of those values; namely, [latex]y \ge 1[/latex] and [latex]y \le -1{.}[/latex]
State the domain and range of the cosecant and cotangent functions.
Domain of cosecant: all real numbers except integer multiples of [latex]\pi{;}[/latex] Range of cosecant: [latex](-\infty,-1] \cup [1, \infty)[/latex]
Domain of cotangent: all real numbers except integer multiples of [latex]\pi{;}[/latex] Range of cotangent: all real numbers
From the graph of the secant function, we can see that the equation [latex]\sec \theta =k[/latex] has two solutions between [latex]0[/latex] and [latex]2\pi[/latex] if [latex]k \ge 1[/latex] or [latex]k \le -1[/latex] but no solution for [latex]-1 \lt k \lt 1{.}[/latex] The same is true of the cosecant function: the equation [latex]\csc \theta = k[/latex] has no solution for [latex]-1 \lt k \lt 1{.}[/latex]
Solve [latex]~~\csc \theta = \dfrac{2\sqrt{3}}{3}~~[/latex] for [latex]\theta[/latex] between [latex]0[/latex] and [latex]2\pi{.}[/latex]
We take the reciprocal of each side of the equation to obtain
[latex]\sin \theta = \dfrac{3}{2\sqrt{3}} = \dfrac{\sqrt{3}}{2}[/latex]
Because [latex]\dfrac{\sqrt{3}}{2}[/latex] is one of the special values, we recognize that one of the solutions is [latex]\theta =\dfrac{\pi}{3}{.}[/latex] The sine and the cosecant are also positive in the second quadrant, so the second solution is [latex]\pi - \dfrac{\pi}{3} = \dfrac{2\pi}{3}{.}[/latex]
Solve [latex]~~\sec \theta = -1.6~~[/latex] for [latex]\theta[/latex] between [latex]0[/latex] and [latex]2\pi{.}[/latex]
[latex]\theta=2.25, \, 4.04[/latex]
All six of the trigonometric ratios are related. If we know one of the ratios, we can use identities to find any of the others.
If [latex]\sec \theta = 3{,}[/latex] and [latex]-\dfrac{\pi}{2} \le \theta \le 0{,}[/latex] find an exact value for [latex]\csc \theta{.}[/latex]
Because [latex]\sec \theta = \dfrac{1}{\cos \theta}{,}[/latex] we see that [latex]\dfrac{1}{\cos \theta}=3{,}[/latex] or [latex]\cos \theta = \dfrac{1}{3}{.}[/latex] We
[latex]\cos^2 \theta + \sin^2 \theta = 1[/latex] | [latex]\text{ Use the Pythagorean identity to find the sine.}[/latex] |
[latex]\left(\dfrac{1}{3}\right)^2 + \sin^2 \theta = 1[/latex] | [latex]\text{Substitute } \frac{1}{3} \text{ for } \cos \theta.[/latex] |
[latex]\sin^2 \theta = 1 - \dfrac{1}{9}=\dfrac{8}{9}[/latex] | [latex]\text{Subtract}~ \left(\frac{1}{3}\right)^2=\frac{1}{9}~ \text{ from both sides.}[/latex] |
Because [latex]\theta[/latex] lies in the fourth quadrant, where the sine function is negative, we choose the negative square root for [latex]\sin \theta{.}[/latex] Once we know [latex]\sin \theta{,}[/latex] we calculate its reciprocal to find [latex]\csc\theta{.}[/latex]
[latex]\sin \theta = -\sqrt{\dfrac{8}{9}} = \dfrac{-2\sqrt{2}}{3},~{ and }~\csc\theta = \dfrac{1}{\sin \theta} = \dfrac{-3}{2\sqrt{2}} = \dfrac{-3\sqrt{2}}{4}[/latex]
If [latex]\csc \theta = \dfrac{-\sqrt{13}}{3}{,}[/latex] and [latex]\pi \le \theta \le \dfrac{3\pi}{2}{,}[/latex] find an exact value for [latex]\sec \theta{.}[/latex]
[latex]\sec\theta = \dfrac{-\sqrt{13}}{2}[/latex]
Identities are especially useful if the trig ratios are algebraic expressions rather than numerical values. In the next example, we use the cotangent identity.
[latex]{\cot \theta = \dfrac{1}{\tan \theta} = \dfrac{\cos \theta}{\sin \theta},~~~~\sin \theta \not=0}[/latex]
If [latex]\csc x=w[/latex] and [latex]0 \lt x \lt \dfrac{\pi}{2}{,}[/latex] find an expression for [latex]\cot x{.}[/latex]
Because the sine is the reciprocal of the cosecant, we have [latex]\sin x = \dfrac{1}{\csc x} = \dfrac{1}{w}{.}[/latex] We substitute [latex]{\dfrac{1}{w}}[/latex] for [latex]\sin x[/latex] in the Pythagorean identity to find
[latex]\cos x = \pm \sqrt{1 - \sin^2 x} = \pm \sqrt{1 - \left({\dfrac{1}{w}}\right)^2}[/latex]
We choose the positive root because cosine is positive in the first quadrant and simplify to get
[latex]\cos x = \sqrt{1 - \dfrac{1}{w^2}} = \sqrt{\dfrac{w^2-1}{w^2}} = \dfrac{\sqrt{w^2 - 1}}{|w|}[/latex]
We can replace [latex]|w|[/latex] by [latex]w[/latex] in this last expression because [latex]w \gt 0{.}[/latex] (Do you see why [latex]w \gt 0{?}[/latex]) Finally, because the cotangent is the reciprocal of the tangent, we have
[latex]\cot x = \dfrac{\cos x}{\sin x} = \dfrac{\dfrac{w^2-1}{w}}{\dfrac{1}{w}}=\sqrt{w^2 - 1}[/latex]
If [latex]\sec t = \dfrac{2}{a}[/latex] and [latex]\dfrac{3\pi}{2} \lt t \lt 2\pi{,}[/latex] find expressions for [latex]\csc t[/latex] and [latex]\cot t{.}[/latex]
[latex]\csc t = \dfrac{-2}{\sqrt{1-a^2}}{,}[/latex] [latex]~ \cot t = \dfrac{-a}{\sqrt{1-a^2}}[/latex]
We can often simplify trigonometric expressions by first converting all the trig ratios to sines and cosines.
Simplify [latex]\sec \theta - \tan \theta \sin \theta{.}[/latex]
We replace [latex]~\sec \theta~[/latex] by [latex]~\dfrac{1}{\cos \theta}~[/latex] and [latex]~\tan \theta~[/latex] by [latex]~\dfrac{\sin \theta}{\cos \theta}~[/latex] to get
[latex]\dfrac{1}{\cos \theta} - \dfrac{\sin \theta}{\cos \theta} \cdot \sin \theta = \dfrac{1}{\cos \theta} - \dfrac{\sin^2 \theta}{\cos \theta}\\ = \dfrac{1 - \sin^2 \theta}{\cos \theta}= \dfrac{\cos^2 \theta}{\cos \theta} = \cos \theta[/latex]
In the previous example, you can verify that [latex]\sec \theta - \tan \theta \sin \theta = \cos \theta[/latex] by graphing the functions [latex]Y_1=\sec \theta - \tan \theta \sin \theta[/latex] and [latex]Y_2=\cos \theta[/latex] in the ZTrig window to see that they are the same.
Show that [latex]\sin^2 x(1+\cot^2 x) = 1{.}[/latex]
[latex]\sin^2x (1+\cot^2 x) = \sin^2 x\left(1 + \dfrac{\cos^2 x}{\sin^2 x}\right)=\sin^2 x + \cos^2 x = 1[/latex]
There are two alternate versions of the Pythagorean identity that involve the reciprocal trig functions. These identities are useful when we know the value of [latex]\tan \theta[/latex] or [latex]\cot \theta[/latex] and want to find the other trig values.
[latex]{1 + \tan^2 \theta = \sec^2\theta~~~~~~~~~~1 + \cot^2\theta = \csc^2 \theta}[/latex]
You should memorize these identities, but they are easy to derive from the original Pythagorean identity, [latex]\sin^2 \theta + \cos^2 \theta = 1{.}[/latex] We will prove them in the Homework problems.
If [latex]\tan \alpha = \dfrac{3}{5}[/latex] and [latex]\alpha[/latex] lies in the third quadrant, find exact values for [latex]\sec \alpha[/latex] and [latex]\cos \alpha{.}[/latex]
We cannot find the sine and cosine of an angle directly from the value of the tangent; in particular, it is not true that [latex]\sin \alpha = 3[/latex] and [latex]\cos \alpha = 5{!}[/latex] (Do you see why?) Instead, we begin with the Pythagorean identity for the tangent.
[latex]\sec^2 \alpha = 1 + \tan^2 \alpha = 1 + (\dfrac{3}{5})^2\\ = \dfrac{25}{25} + \dfrac{9}{25} = \dfrac{34}{25}\\ \sec \alpha = \pm \sqrt{\dfrac{34}{25}} = \dfrac{\pm \sqrt{34}}{5}[/latex]
Because [latex]\alpha[/latex] is in the third quadrant, both its sine and cosine are negative. Therefore the reciprocals of cosine and sine—namely, secant and cosecant—must also be negative, and hence [latex]\sec \alpha = \dfrac{-\sqrt{34}}{5}{.}[/latex] The cosine of [latex]\alpha[/latex] is the reciprocal of the secant, so [latex]\cos \alpha = \dfrac{-5}{\sqrt{34}}{.}[/latex]
If [latex]\cot \phi = \dfrac{-3}{\sqrt{2}}[/latex] and [latex]\phi[/latex] lies in the second quadrant, find exact values for [latex]\csc \phi[/latex] and [latex]\sin \phi{.}[/latex]
[latex]\csc \phi = \sqrt{\dfrac{11}{2}}{,}[/latex] [latex]~ \sin \phi = \sqrt{\dfrac{2}{11}}[/latex]
If [latex]\theta[/latex] is an angle in standard position, and [latex]P(x,y)[/latex] is a point on the terminal side, then we define the following functions.
[latex]\text{The secant}:~~~~~~ \sec \theta = \dfrac{r}{x}[/latex]
[latex]\text{The cosecant}:~~~~ \csc \theta = \dfrac{r}{y}[/latex]
[latex]\text{The cotangent}:~~~ \cot \theta = \dfrac{x}{y}[/latex]
If [latex]\theta[/latex] is one of the acute angles in a right triangle,
[latex]\sec \theta = \dfrac{{hypotenuse}}{{adjacent}}\qquad \csc \theta = \dfrac{{hypotenuse}}{{opposite}}\qquad \cot \theta = \dfrac{{adjacent}}{{opposite}}[/latex]
[latex]\text{The secant function}:~~~~~~ \sec \theta = \dfrac{1}{\cos \theta}[/latex]
[latex]\text{The cosecant function}:~~~~ \csc \theta = \dfrac{1}{\sin \theta}[/latex]
[latex]\text{The cotangent function}:~~~ \cot \theta = \dfrac{1}{\tan \theta}[/latex]
[latex]\cot \theta = \dfrac{1}{\tan \theta} = \dfrac{\cos \theta}{\sin \theta},~~~~\sin \theta \not=0[/latex]
[latex]1 + \tan^2 \theta = \sec^2\theta~~~~~~~~~~1 + \cot^2\theta = \csc^2 \theta[/latex]