Chapter 8: More Functions and Identities
Chapter 8 Summary and Review
Key Concepts
-
- Identities are useful for changing from one form to another when solving equations, for simplifying expressions, and for finding exact values for trigonometric functions.
- it is not true in general that [latex]\cos (\alpha + \beta)[/latex] is equal to [latex]\cos \alpha + \cos \beta[/latex] for all angles [latex]\alpha[/latex] and [latex]\beta{,}[/latex] or that [latex]\sin (\alpha + \beta)[/latex] is equal to [latex]\sin \alpha + \sin \beta\text{.}[/latex]
-
Sum and Difference of Angles Identities.
[latex]\cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta[/latex]
[latex]\sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta[/latex]
[latex]\tan (\alpha + \beta) = \dfrac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}[/latex]
[latex]\cos (\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta[/latex]
[latex]\sin (\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta[/latex]
[latex]\tan (\alpha - \beta) = \dfrac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}[/latex]
-
Double Angle Identities.
[latex]\cos 2\theta = \cos^2 \theta - \sin^2 \theta \sin 2\theta = 2\sin \theta \cos \theta\\ = 2\cos^2 \theta -1 \tan 2\theta = \dfrac {2\tan \theta}{1-\tan^2 \theta}\\ = 1-2\sin^2 \theta[/latex]
- Using one of the calculator keys [latex]SIN^{-1},~ COS^{-1}\text{,}[/latex] or [latex]TAN^{-1}[/latex] performs the inverse operation for computing a sine, cosine, or tangent.
- Two functions are called inverse functions if each “undoes” the results of the other function.
- If [latex]y=f(x)[/latex] is a function, we can often find a formula for the inverse function by interchanging [latex]x[/latex] and [latex]y[/latex] in the formula for the function and then solving for [latex]y\text{.}[/latex]
- The graphs of [latex]y=f(x)[/latex] and [latex]y=f^{-1}(x)[/latex] are symmetric about the line [latex]y=x\text{.}[/latex]
- The domain of [latex]f^{-1}[/latex] is the same as the range of [latex]f\text{,}[/latex] and the range of [latex]f^{-1}[/latex] is the same as the domain of [latex]f\text{.}[/latex]
-
Horizontal Line Test.
- A function passes the Horizontal Line Test if every horizontal line intersects the graph at most once. In that case, there is only one [latex]x[/latex]-value for each [latex]y[/latex]-value, and the function is called one-to-one.
- A function [latex]f[/latex] has an inverse function if and only if [latex]f[/latex] is one-to-one.
-
Definitions of the Inverse Trig Functions.
[latex]\sin^{-1}x=\theta~~~\text{if and only if}~~~~\sin \theta = x~~~\text{and}~~~\dfrac{-\pi}{2} \le \theta \le \dfrac{\pi}{2}[/latex]
[latex]\cos^{-1}x=\theta~~~\text{if and only if}~~~~\cos \theta = x~~~\text{and}~~~0 \le \theta \le \pi[/latex]
[latex]\tan^{-1}x=\theta~~~\text{if and only if}~~~~\tan \theta = x~~~\text{and}~~~\dfrac{-\pi}{2} \lt \theta \lt \dfrac{\pi}{2}[/latex]
-
Inverse Trigonometric Functions.
[latex]\sin(\sin^{-1}x) = x~~~~\text{for}~ -1 \le x \le 1[/latex]
[latex]\cos(\cos^{-1}x) = x~~~~\text{for}~ -1 \le x \le 1[/latex]
[latex]\tan(\tan^{-1}x) = x~~~~\text{for all}~x[/latex]
However,
[latex]\sin^{-1}(\sin x)~~\text{may not be equal to}~x[/latex]
[latex]\cos^{-1}(\cos x)~~\text{may not be equal to}~x[/latex]
[latex]\tan^{-1}(\tan x)~~\text{may not be equal to}~x[/latex]
- The inverse sine function is also called the arcsine function and denoted by [latex]\arcsin (x)\text{.}[/latex] Similarly, the inverse cosine function is sometimes denoted by [latex]\arccos (x)\text{,}[/latex] and the inverse tangent function by [latex]\arctan (x)\text{.}[/latex]
- When simplifying expressions involving inverse trigonometric functions, it can often clarify the computations if we assign a name such as [latex]\theta[/latex] or [latex]\phi[/latex] to the inverse trig value.
-
Three More Functions.
If [latex]\theta[/latex] is an angle in standard position, and [latex]P(x,y)[/latex] is a point on the terminal side, then we define the following functions.
[latex]\text{The}~~ \textbf{secant}:~~~~~~ \sec \theta = \dfrac{r}{x}[/latex]
[latex]\text{The}~~ \textbf{cosecant}:~~~~ \csc \theta = \dfrac{r}{y}[/latex]
[latex]\text{The}~~ \textbf{cotangent}:~~~ \cot \theta = \dfrac{x}{y}[/latex]
-
Reciprocal Trigonometric Ratios.
If [latex]\theta[/latex] is one of the acute angles in a right triangle,
[latex][latex] \begin{aligned}[t] \sec \theta = \dfrac{\text{hypotenuse}}{\text{adjacent}} \\ \csc \theta = \dfrac{\text{hypotenuse}}{\text{opposite}} \\ \cot \theta = \dfrac{\text{adjacent}}{\text{opposite}} \\ \end{aligned}[/latex]
-
Reciprocal Trigonometric Functions.
[latex]\text{The}~~ \textbf{secant} ~\text{function}:~~~~~~ \sec \theta = \dfrac{1}{\cos \theta}[/latex]
[latex]\text{The}~~ \textbf{cosecant}~\text{function}:~~~~ \csc \theta = \dfrac{1}{\sin \theta}[/latex]
[latex]\text{The}~~ \textbf{cotangent}~\text{function}:~~~ \cot \theta = \dfrac{1}{\tan \theta}[/latex]
- We can obtain graphs of the secant, cosecant, and cotangent functions as the reciprocals of the three basic functions.
- We can solve equations of the form [latex]\sec \theta = k\text{,}[/latex] [latex]\csc \theta = k\text{,}[/latex] and [latex]\cot \theta = k[/latex] by taking the reciprocal of both sides.
- If we know one of the trigonometric ratios for an angle, we can use identities to find any of the others.
-
Cotangent Identity.
[latex]\cot \theta = \dfrac{1}{\tan \theta} = \dfrac{\cos \theta}{\sin \theta},~~~~\sin \theta \not=0[/latex]
-
Two More Pythagorean Identities.
[latex]1 + \tan^2 \theta = \sec^2\theta~~~~~~~~~~1 + \cot^2\theta = \csc^2 \theta[/latex]
We can often simplify trigonometric expressions by first converting all the trig ratios to sines and cosines.