Coordinate Form of a Vector.
The vector
[latex]{\bf{v}} = a{\bf{i}} + b{\bf{j}}[/latex]
is the vector whose horizontal component is [latex]a[/latex] and whose vertical component is [latex]b\text{.}[/latex]
Chapter 9: Vectors
The vector
[latex]{\bf{v}} = a{\bf{i}} + b{\bf{j}}[/latex]
is the vector whose horizontal component is [latex]a[/latex] and whose vertical component is [latex]b\text{.}[/latex]
Suppose that the vector [latex]{\bf{v}}[/latex] has magnitude [latex]\|{\bf{v}}\|[/latex] and points in the direction of the angle [latex]\theta[/latex] in standard position. If [latex]{\bf{v}}[/latex] has the coordinate form [latex]{\bf{v}} = a{\bf{i}} + b{\bf{j}}\text{,}[/latex] then
[latex]a = \|{\bf{v}}\| \cos \theta \|{\bf{v}}\| = \sqrt{a^2 + b^2}\\ b = \|{\bf{v}}\| \sin \theta \tan \theta = \dfrac{b}{a}[/latex]
If [latex]{\bf{v}} = a{\bf{i}} + b{\bf{j}}[/latex] and [latex]k[/latex] is a scalar, then
[latex]k{\bf{v}} = ka{\bf{i}} + kb{\bf{j}}[/latex]
If [latex]{\bf{u}} = a{\bf{i}}+b{\bf{j}}[/latex] and [latex]{\bf{v}} = c{\bf{i}}+d{\bf{j}}\text{,}[/latex] then
[latex]{\bf{u}} + {\bf{v}} = (a + c){\bf{i}}+ (b + d){\bf{j}}[/latex]
A unit vector [latex]{\bf{u}}[/latex] in the direction of [latex]{\bf{v}}[/latex] is given by [latex]{\bf{u}} = \dfrac{1}{\|{\bf{v}}\|} {\bf{v}}.[/latex]
A vector [latex]{\bf{w}}[/latex] of length [latex]k[/latex] in the direction of [latex]{\bf{v}}[/latex] is given by [latex]{\bf{w}} = \dfrac{k}{\|{\bf{v}}\|} {\bf{v}}.[/latex]
The dot product of two vectors [latex]{\bf{v}} = v_1{\bf{i}} + v_2 {\bf{j}}[/latex] and [latex]{\bf{w}} = w_1{\bf{i}} + w_2 {\bf{j}}[/latex] is the scalar
[latex]{\bf{v}} \cdot {\bf{w}} = v_1w_1+v_2w_2[/latex]
The dot product of two vectors [latex]{\bf{v}}[/latex] and [latex]{\bf{w}}[/latex] is the scalar
[latex]{\bf{v}} \cdot {\bf{w}} = \|{\bf{v}}\|\|{\bf{w}}\| \cos \theta[/latex]
where [latex]\theta[/latex] is the angle between the vectors.
The component of [latex]{\bf{w}}[/latex] in the direction of [latex]{\bf{v}}[/latex] is the scalar
[latex]\text{comp}_{\bf{v}}{\bf{w}} = \dfrac{{\bf{v}} \cdot {\bf{w}}}{\|{\bf{v}}\|}[/latex]
The angle [latex]\theta[/latex] between two vectors [latex]{\bf{v}}[/latex] and [latex]{\bf{w}}[/latex] is given by
[latex]\cos \theta = \dfrac{{\bf{v}} \cdot {\bf{w}}}{\|{\bf{v}}\| \|{\bf{w}}\|}[/latex]