Chapter 10: Polar Coordinates and Complex Numbers

Exercises: 10.2 Polar Graphs

SKILLS

Practice each skill in the Homework Problems listed.

  1. Describe the effect of parameters in polar curves #1–16, 83–84
  2. Compare polar and Cartesian graphs #21–24
  3. Sketch standard polar graphs #17–20, 25–42, 75–82
  4. Identify standard polar graphs #43–58
  5. Write equations for standard polar graphs #59–66
  6. Find intersection points of polar graphs #67–74

 

Suggested Homework

Problems: #8, 24, 28, 34, 38, 42, 50, 60, 62, 64, 72

 

Exercises for 10.2 Polar Graphs

Exercise Group

In Problems 1-4, use your calculator to graph the equations.

1.
  1. Graph [latex]r=k\text{,}[/latex] for [latex]k=1, 2, 3\text{.}[/latex] How does the graph change for different values of [latex]k\text{?}[/latex]
  2. Write a Cartesian equation for each graph in part (a).
2.
  1. Graph [latex]r=k\text{,}[/latex] for [latex]k=-1, -2, -3\text{.}[/latex] How does these graphs compare to the graphs in Problem 1?
  2. Write a Cartesian equation for each graph in part (a).
3.
  1. Graph [latex]\theta=k\text{,}[/latex] for [latex]k=\dfrac{\pi}{6},~ \dfrac{\pi}{3},~\dfrac{2\pi}{3},~\dfrac{5\pi}{6}\text{.}[/latex] How does the graph change for different values of [latex]k\text{?}[/latex]
  2. Write a Cartesian equation for each graph in part (a).
4.
  1. Graph [latex]\theta=k\text{,}[/latex] for [latex]k=\dfrac{7\pi}{6},~ \dfrac{5\pi}{3},~\dfrac{7\pi}{3},~\dfrac{11\pi}{6}\text{.}[/latex] How does the graph change for different values of [latex]k\text{?}[/latex]
  2. Write a Cartesian equation for each graph in part (a).

5.

Complete the table of values for each equation. Plot the points in order of increasing [latex]\theta\text{.}[/latex] What is different about the two graphs? Equation 1: [latex]~~r=2[/latex]

[latex]\theta[/latex] [latex]0[/latex] [latex]\dfrac{\pi}{4}[/latex] [latex]\dfrac{\pi}{2}[/latex] [latex]\dfrac{3\pi}{4}[/latex] [latex]\pi[/latex] [latex]\dfrac{5\pi}{4}[/latex] [latex]\dfrac{3\pi}{2}[/latex] [latex]\dfrac{7\pi}{4}[/latex]
[latex]r=2[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex]

Equation 2: [latex]~~r=-2[/latex]

[latex]\theta[/latex] [latex]0[/latex] [latex]\dfrac{\pi}{4}[/latex] [latex]\dfrac{\pi}{2}[/latex] [latex]\dfrac{3\pi}{4}[/latex] [latex]\pi[/latex] [latex]\dfrac{5\pi}{4}[/latex] [latex]\dfrac{3\pi}{2}[/latex] [latex]\dfrac{7\pi}{4}[/latex]
[latex]r=-2[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex]

6.

Graph each line and label the points with their coordinates. How are the points on the two lines related? Equation 1: [latex]~~\theta = \dfrac{\pi}{4}[/latex]

[latex]\theta = \dfrac{\pi}{4}[/latex] [latex]\dfrac{\pi}{4}[/latex] [latex]\dfrac{\pi}{4}[/latex] [latex]\dfrac{\pi}{4}[/latex] [latex]\dfrac{\pi}{4}[/latex] [latex]\dfrac{\pi}{4}[/latex]
[latex]r[/latex] [latex]-2[/latex] [latex]-1[/latex] [latex]0[/latex] [latex]1[/latex] [latex]2[/latex]

Equation 1: [latex]~~\theta = \dfrac{5\pi}{4}[/latex]

[latex]\theta = \dfrac{5\pi}{4}[/latex] [latex]\dfrac{5\pi}{4}[/latex] [latex]\dfrac{5\pi}{4}[/latex] [latex]\dfrac{5\pi}{4}[/latex] [latex]\dfrac{5\pi}{4}[/latex] [latex]\dfrac{5\pi}{4}[/latex]
[latex]r[/latex] [latex]-2[/latex] [latex]-1[/latex] [latex]0[/latex] [latex]1[/latex] [latex]2[/latex]

7.

  1. Graph the circle [latex]r=4\cos \theta\text{.}[/latex] Label the points corresponding to [latex]\theta = 0,~\dfrac{\pi}{4},~\dfrac{\pi}{2},~\dfrac{3\pi}{4},[/latex] and [latex]\pi\text{.}[/latex]
  2. Complete the table of values. What happens to the graph as [latex]\theta[/latex] increases from [latex]\pi[/latex] to [latex]2\pi\text{?}[/latex]
    [latex]\theta[/latex] [latex]\pi[/latex] [latex]\dfrac{5\pi}{4}[/latex] [latex]\dfrac{3\pi}{2}[/latex] [latex]\dfrac{7\pi}{4}[/latex] [latex]2\pi[/latex]
    [latex]r[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex]
  3. Find the center and radius of the circle.
  4. Give the Cartesian equation of the circle.

8.

  1. Graph the circle [latex]r=4\sin \theta\text{.}[/latex] Label the points corresponding to [latex]\theta = 0,~\dfrac{\pi}{4},~\dfrac{\pi}{2},~\dfrac{3\pi}{4},[/latex] and [latex]\pi\text{.}[/latex]
  2. Complete the table of values. What happens to the graph as [latex]\theta[/latex] increases from [latex]\pi[/latex] to [latex]2\pi\text{?}[/latex]
    [latex]\theta[/latex] [latex]\pi[/latex] [latex]\dfrac{5\pi}{4}[/latex] [latex]\dfrac{3\pi}{2}[/latex] [latex]\dfrac{7\pi}{4}[/latex] [latex]2\pi[/latex]
    [latex]r[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex]
  3. Find the center and radius of the circle.
  4. Give the Cartesian equation of the circle.

9.

  1. Graph [latex]r=2a\sin\theta[/latex] for [latex]a=-2,-1,1,2\text{.}[/latex]
  2. How do the graphs change for different values of [latex]a\text{?}[/latex]

10.

  1. Graph [latex]r=2a\cos\theta[/latex] for [latex]a=-2,-1,1,2\text{.}[/latex]
  2. How do the graphs change for different values of [latex]a\text{?}[/latex]

11.

Complete the table of values for each cardioid and graph the equation.

[latex]\theta[/latex] [latex]0[/latex] [latex]\dfrac{\pi}{2}[/latex] [latex]\pi[/latex] [latex]\dfrac{3\pi}{2}[/latex] [latex]2\pi[/latex]
[latex]r[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex]
  1. [latex]\displaystyle r=1+\sin \theta[/latex]
  2. [latex]\displaystyle r=-1+\sin \theta[/latex]
  3. [latex]\displaystyle r=1-\sin \theta[/latex]
  4. [latex]\displaystyle r=-1-\sin \theta[/latex]

12.

Complete the table of values for each cardioid and graph the equation.

[latex]\theta[/latex] [latex]0[/latex] [latex]\dfrac{\pi}{2}[/latex] [latex]\pi[/latex] [latex]\dfrac{3\pi}{2}[/latex] [latex]2\pi[/latex]
[latex]r[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex]
  1. [latex]\displaystyle r=1+\cos \theta[/latex]
  2. [latex]\displaystyle r=-1+\cos \theta[/latex]
  3. [latex]\displaystyle r=1-\cos \theta[/latex]
  4. [latex]\displaystyle r=-1-\cos \theta[/latex]

13.

Complete the table of values for each limaçon and graph the equation.

[latex]\theta[/latex] [latex]0[/latex] [latex]\dfrac{\pi}{2}[/latex] [latex]\pi[/latex] [latex]\dfrac{3\pi}{2}[/latex] [latex]2\pi[/latex]
[latex]r[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex]
  1. [latex]\displaystyle r=2+\cos \theta[/latex]
  2. [latex]\displaystyle r=2-\cos \theta[/latex]
  3. [latex]\displaystyle r=1+2\cos \theta[/latex]
  4. [latex]\displaystyle r=1-2\cos \theta[/latex]

14.

Complete the table of values for each limaçon and graph the equation.

[latex]\theta[/latex] [latex]0[/latex] [latex]\dfrac{\pi}{2}[/latex] [latex]\pi[/latex] [latex]\dfrac{3\pi}{2}[/latex] [latex]2\pi[/latex]
[latex]r[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex]
  1. [latex]\displaystyle r=2+\sin \theta[/latex]
  2. [latex]\displaystyle r=2-\sin \theta[/latex]
  3. [latex]\displaystyle r=1+2\sin \theta[/latex]
  4. [latex]\displaystyle r=1-2\sin \theta[/latex]

15.

  1. Graph the following roses and compare. How is the number of petals related to the value of [latex]n[/latex] in the equation [latex]r=a\sin n\theta\text{?}[/latex]
    [latex]r=\sin 2\theta,~~r=\sin 3\theta,~~r=\sin 4\theta,~~r=\sin 5\theta[/latex]
  2. For each graph above, list the values of [latex]\theta[/latex] where the tips of the petals occur.
  3. Graph [latex]r=a\sin 3\theta~[/latex] for [latex]a=1,2,[/latex] and [latex]3\text{.}[/latex] How does the value of [latex]a[/latex] affect the graph?

16.

  1. Graph the following roses and compare. How is the number of petals related to the value of [latex]n[/latex] in the equation [latex]r=a\cos n\theta\text{?}[/latex]
    [latex]r=\cos 2\theta,~~r=\cos 3\theta,~~r=\cos 4\theta,~~r=\cos 5\theta[/latex]
  2. For each graph above, list the values of [latex]\theta[/latex] where the tips of the petals occur.
  3. Graph [latex]r=a\cos 3\theta~[/latex] for [latex]a=1,2,[/latex] and [latex]3\text{.}[/latex] How does the value of [latex]a[/latex] affect the graph?

17.

  1. Solve [latex]r^2=9\cos 2\theta~[/latex] for [latex]r\text{.}[/latex] (You should get two equations for [latex]r\text{.}[/latex])
  2. Graph both equations together. Change [latex]\theta[/latex]step to 0.02 to see the whole graph.
  3. How does the value of [latex]a[/latex] affect the graph of [latex]r^2=a^2\cos 2\theta\text{?}[/latex]

18.

  1. Solve [latex]r^2=9\cos 2\theta~[/latex] for [latex]r\text{.}[/latex] (You should get two equations for [latex]r\text{.}[/latex])
  2. Graph both equations together. Change [latex]\theta[/latex]step to 0.02 to see the whole graph.
  3. How does this graph differ from the graph in Problem 17?

19.

Graph the Archimedean spiral [latex]r=\theta\text{.}[/latex] Set your window to

[latex][latex] \begin{aligned}[t] \theta\text{min}=0~~~~~~~~~~\theta\text{max}=8\pi\\ \text{Xmin}=-20~~~~\text{Xmax}=20\\ \text{Ymin}=-20~~~~\text{Ymax}=20\\ \end{aligned}[/latex]

Then graph by pressing Zoom 5.

20.

Graph the logarithmic spiral [latex]r=e^{0.2\theta}\text{.}[/latex] Set your window to

[latex][latex] \begin{aligned}[t] \theta\text{min}=0~~~~~~~~~~\theta\text{max}=8\pi\\ \text{Xmin}=-100~~~~\text{Xmax}=100\\ \text{Ymin}=-100~~~~\text{Ymax}=100\\ \end{aligned}[/latex]

Then graph by pressing Zoom 5.

21.

    1. Complete the table and graph the equation [latex]y=\sin 3\theta[/latex] in Cartesian coordinates, for [latex]0 \le \theta\le 2\pi\text{.}[/latex]
      [latex]\theta[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex]
      [latex]3\theta[/latex] [latex]0[/latex] [latex]\dfrac{\pi}{4}[/latex] [latex]\dfrac{\pi}{2}[/latex] [latex]\dfrac{3\pi}{4}[/latex] [latex]\pi[/latex] [latex]\dfrac{5\pi}{4}[/latex] [latex]\dfrac{3\pi}{2}[/latex] [latex]\dfrac{7\pi}{4}[/latex] [latex]2\pi[/latex]
      [latex]y[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex]

Complete the table and graph the equation [latex]r=\sin 3\theta[/latex] in polar coordinates for [latex]0 \le \theta\le 2\pi\text{.}[/latex]

[latex]\theta[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex]
[latex]3\theta[/latex] [latex]0[/latex] [latex]\dfrac{\pi}{4}[/latex] [latex]\dfrac{\pi}{2}[/latex] [latex]\dfrac{3\pi}{4}[/latex] [latex]\pi[/latex] [latex]\dfrac{5\pi}{4}[/latex] [latex]\dfrac{3\pi}{2}[/latex] [latex]\dfrac{7\pi}{4}[/latex] [latex]2\pi[/latex]
[latex]r[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex]

22.

    1. Complete the table and graph the equation [latex]y=\cos 2\theta[/latex] in Cartesian coordinates for [latex]0 \le \theta\le 2\pi\text{.}[/latex]
      [latex]\theta[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex]
      [latex]2\theta[/latex] [latex]0[/latex] [latex]\dfrac{\pi}{4}[/latex] [latex]\dfrac{\pi}{2}[/latex] [latex]\dfrac{3\pi}{4}[/latex] [latex]\pi[/latex] [latex]\dfrac{5\pi}{4}[/latex] [latex]\dfrac{3\pi}{2}[/latex] [latex]\dfrac{7\pi}{4}[/latex] [latex]2\pi[/latex]
      [latex]y[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex]

Complete the table and graph the equation [latex]r=\cos 2\theta[/latex] in polar coordinates for [latex]0 \le \theta\le 2\pi\text{.}[/latex]

[latex]\theta[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex]
[latex]2\theta[/latex] [latex]0[/latex] [latex]\dfrac{\pi}{4}[/latex] [latex]\dfrac{\pi}{2}[/latex] [latex]\dfrac{3\pi}{4}[/latex] [latex]\pi[/latex] [latex]\dfrac{5\pi}{4}[/latex] [latex]\dfrac{3\pi}{2}[/latex] [latex]\dfrac{7\pi}{4}[/latex] [latex]2\pi[/latex]
[latex]r[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex]

23.

    1. Complete the table and graph the equation [latex]y=2+2\cos\theta[/latex] in Cartesian coordinates for [latex]0 \le \theta\le 2\pi\text{.}[/latex]
      [latex]\theta[/latex] [latex]0[/latex] [latex]\dfrac{\pi}{4}[/latex] [latex]\dfrac{\pi}{2}[/latex] [latex]\dfrac{3\pi}{4}[/latex] [latex]\pi[/latex] [latex]\dfrac{5\pi}{4}[/latex] [latex]\dfrac{3\pi}{2}[/latex] [latex]\dfrac{7\pi}{4}[/latex] [latex]2\pi[/latex]
      [latex]y[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex]

Complete the table and graph the equation [latex]r=2+2\cos\theta[/latex] in polar coordinates for [latex]0 \le \theta\le 2\pi\text{.}[/latex]

[latex]\theta[/latex] [latex]0[/latex] [latex]\dfrac{\pi}{4}[/latex] [latex]\dfrac{\pi}{2}[/latex] [latex]\dfrac{3\pi}{4}[/latex] [latex]\pi[/latex] [latex]\dfrac{5\pi}{4}[/latex] [latex]\dfrac{3\pi}{2}[/latex] [latex]\dfrac{7\pi}{4}[/latex] [latex]2\pi[/latex]
[latex]r[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex]

24.

    1. Complete the table and graph the equation [latex]y=1-\sin\theta[/latex] in Cartesian coordinates for [latex]0 \le \theta\le 2\pi\text{.}[/latex]
      [latex]\theta[/latex] [latex]0[/latex] [latex]\dfrac{\pi}{4}[/latex] [latex]\dfrac{\pi}{2}[/latex] [latex]\dfrac{3\pi}{4}[/latex] [latex]\pi[/latex] [latex]\dfrac{5\pi}{4}[/latex] [latex]\dfrac{3\pi}{2}[/latex] [latex]\dfrac{7\pi}{4}[/latex] [latex]2\pi[/latex]
      [latex]y[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex]

Complete the table and graph the equation [latex]r=1-\sin\theta[/latex] in polar coordinates for [latex]0 \le \theta\le 2\pi\text{.}[/latex]

[latex]\theta[/latex] [latex]0[/latex] [latex]\dfrac{\pi}{4}[/latex] [latex]\dfrac{\pi}{2}[/latex] [latex]\dfrac{3\pi}{4}[/latex] [latex]\pi[/latex] [latex]\dfrac{5\pi}{4}[/latex] [latex]\dfrac{3\pi}{2}[/latex] [latex]\dfrac{7\pi}{4}[/latex] [latex]2\pi[/latex]
[latex]r[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex] [latex]\hphantom{000}[/latex]

Exercise Group

For Problems 25–42, use the catalog of polar graphs to help you identify and sketch the following curves. Check your work by graphing with a calculator.

25.

[latex]r=3\cos\theta[/latex]

26.

[latex]r=2\sin \theta[/latex]

27.

[latex]\theta=\dfrac{\pi}{4}[/latex]

28.

[latex]\theta=\dfrac{4\pi}{3}[/latex]

29.

[latex]r=4[/latex]

30.

[latex]r=2[/latex]

31.

[latex]r=2+2\sin \theta[/latex]

32.

[latex]r=3+3\cos\theta[/latex]

33.

[latex]r=2-\cos\theta[/latex]

34.

[latex]r=1-3\sin \theta[/latex]

35.

[latex]r=3\sin 2\theta[/latex]

36.

[latex]r=2\cos 3\theta[/latex]

37.

[latex]r=2\cos 5\theta[/latex]

38.

[latex]r=4\sin 4\theta[/latex]

39.

[latex]r=2+3\sin \theta[/latex]

40.

[latex]r=3+2\sin \theta[/latex]

41.

[latex]r^2=\cos 2\theta[/latex]

42.

[latex]r^2=4\sin2\theta[/latex]

Exercise Group

For Problems 43–52, identify each curve and graph it.

43.

[latex]r\csc\theta = 2[/latex]

44.

[latex]r=2\sec \theta[/latex]

45.

[latex]r^2=4,~ 0 \le \theta \le \dfrac{3\pi}{4}[/latex]

46.

[latex]\theta = \dfrac{\pi}{4},~ {|r|} \lt 2[/latex]

47.

[latex]r=\sin \theta,~ \dfrac{3\pi}{4} \le \theta \le \dfrac{5\pi}{4}[/latex]

48.

[latex]r=\cos \theta,~ 0 \le \theta \le \dfrac{\pi}{2}[/latex]

49.

[latex]r=2\sin 2\theta \cos 2\theta[/latex]

50.

[latex]r=\cos^2 \theta - \sin^2 \theta[/latex]

51.

[latex]r(1-\cos\theta)=\sin^2\theta[/latex]

52.

[latex]r \sec \theta=\sec\theta - \tan \theta[/latex]

Exercise Group

For Problems 53–58, graph the following polar curves. Do you recognize them?

53.

[latex]r = \dfrac{2}{1-\cos\theta}[/latex]

54.

[latex]r = \dfrac{6}{2+\sin\theta}[/latex]

55.

[latex]r = \dfrac{2}{2-\cos\theta}[/latex]

56.

[latex]r = \dfrac{1}{1+\sin\theta}[/latex]

57.

[latex]r = \dfrac{1}{1+2\sin\theta}[/latex]

58.

[latex]r = \dfrac{3}{2-3\cos\theta}[/latex]

Exercise Group

For Problems 59–66, write a polar equation for the graph.

59.

cardioid

60.

cardioid

61.

five-petal rose

62.

four-petal rose

63.

circle

64.

circle

65.

limacon

66.

limacon

Exercise Group

For Problems 67–74, find the coordinates of the intersection points of the two curves analytically. Then graph the curves to verify your answers.

67.

[latex]r=\cos\theta,~ r=1-\cos\theta[/latex]

68.

[latex]r=\sin\theta,~ r=\cos\theta[/latex]

69.

[latex]r=3\sin\theta,~ r=3\cos\theta[/latex]

70.

[latex]r=\sin 2\theta,~ r=\cos 2\theta[/latex]

71.

[latex]r=1,~ r=1-\cos\theta[/latex]

72.

[latex]r=3\cos\theta,~ r=1+\cos\theta[/latex]

73.

[latex]r=2+\sin\theta,~ r=2-\cos\theta[/latex]

74.

[latex]r=\sin\theta,~ r=\sin 2\theta[/latex]

Exercise Group

For Problems 75–82, graph the polar curve.

75.

[latex]r^2 = \tan \theta[/latex]

76.

[latex]r^2 = \cot \theta[/latex]

77.

[latex]r=\csc\theta-2[/latex] (conchoid)

78.

[latex]r=\tan\theta[/latex] (kappa curve)

79.

[latex]r=\cos 2\theta \sec\theta[/latex] (strophoid)

80.

[latex]r=\sin \theta \tan \theta[/latex] (cissoid)

81.

[latex]r=\dfrac{1}{\sqrt{\theta}}[/latex]

82.

[latex]r=\cos\ \dfrac{\theta}{2},~ 0 \le \theta \le 4\pi[/latex]

83.

Graph the polar curves [latex]r=1-2\sin n\theta[/latex] for [latex]n=2,3,4,5,6\text{.}[/latex] Explain how the value of the parameter [latex]n[/latex] affects the curve.

84.

Graph the polar curves [latex]r=1-3\cos n\theta[/latex] for [latex]n=2,3,4,5,6\text{.}[/latex] Explain how the value of the parameter [latex]n[/latex] affects the curve.

License

Trigonometry Copyright © 2024 by Bimal Kunwor; Donna Densmore; Jared Eusea; and Yi Zhen. All Rights Reserved.

Share This Book