"

Chapter 10: Polar Coordinates and Complex Numbers

Exercises: 10.2 Polar Graphs

SKILLS

Practice each skill in the Homework Problems listed.

  1. Describe the effect of parameters in polar curves #1–16, 83–84
  2. Compare polar and Cartesian graphs #21–24
  3. Sketch standard polar graphs #17–20, 25–42, 75–82
  4. Identify standard polar graphs #43–58
  5. Write equations for standard polar graphs #59–66
  6. Find intersection points of polar graphs #67–74

 

Suggested Homework

Problems: #8, 24, 28, 34, 38, 42, 50, 60, 62, 64, 72

 

Exercises for 10.2 Polar Graphs

Exercise Group

In Problems 1-4, use your calculator to graph the equations.

1.
  1. Graph r=k, for k=1,2,3. How does the graph change for different values of k?
  2. Write a Cartesian equation for each graph in part (a).
2.
  1. Graph r=k, for k=1,2,3. How does these graphs compare to the graphs in Problem 1?
  2. Write a Cartesian equation for each graph in part (a).
3.
  1. Graph θ=k, for k=π6, π3, 2π3, 5π6. How does the graph change for different values of k?
  2. Write a Cartesian equation for each graph in part (a).
4.
  1. Graph θ=k, for k=7π6, 5π3, 7π3, 11π6. How does the graph change for different values of k?
  2. Write a Cartesian equation for each graph in part (a).

5.

Complete the table of values for each equation. Plot the points in order of increasing θ. What is different about the two graphs? Equation 1:   r=2

θ 0 π4 π2 3π4 π 5π4 3π2 7π4
r=2 000 000 000 000 000 000 000 000

Equation 2:   r=2

θ 0 π4 π2 3π4 π 5π4 3π2 7π4
r=2 000 000 000 000 000 000 000 000

6.

Graph each line and label the points with their coordinates. How are the points on the two lines related? Equation 1:   θ=π4

θ=π4 π4 π4 π4 π4 π4
r 2 1 0 1 2

Equation 1:   θ=5π4

θ=5π4 5π4 5π4 5π4 5π4 5π4
r 2 1 0 1 2

7.

  1. Graph the circle r=4cosθ. Label the points corresponding to θ=0, π4, π2, 3π4, and π.
  2. Complete the table of values. What happens to the graph as θ increases from π to 2π?
    θ π 5π4 3π2 7π4 2π
    r 000 000 000 000 000
  3. Find the center and radius of the circle.
  4. Give the Cartesian equation of the circle.

8.

  1. Graph the circle r=4sinθ. Label the points corresponding to θ=0, π4, π2, 3π4, and π.
  2. Complete the table of values. What happens to the graph as θ increases from π to 2π?
    θ π 5π4 3π2 7π4 2π
    r 000 000 000 000 000
  3. Find the center and radius of the circle.
  4. Give the Cartesian equation of the circle.

9.

  1. Graph r=2asinθ for a=2,1,1,2.
  2. How do the graphs change for different values of a?

10.

  1. Graph r=2acosθ for a=2,1,1,2.
  2. How do the graphs change for different values of a?

11.

Complete the table of values for each cardioid and graph the equation.

θ 0 π2 π 3π2 2π
r 000 000 000 000 000
  1. r=1+sinθ
  2. r=1+sinθ
  3. r=1sinθ
  4. r=1sinθ

12.

Complete the table of values for each cardioid and graph the equation.

θ 0 π2 π 3π2 2π
r 000 000 000 000 000
  1. r=1+cosθ
  2. r=1+cosθ
  3. r=1cosθ
  4. r=1cosθ

13.

Complete the table of values for each limaçon and graph the equation.

θ 0 π2 π 3π2 2π
r 000 000 000 000 000
  1. r=2+cosθ
  2. r=2cosθ
  3. r=1+2cosθ
  4. r=12cosθ

14.

Complete the table of values for each limaçon and graph the equation.

θ 0 π2 π 3π2 2π
r 000 000 000 000 000
  1. r=2+sinθ
  2. r=2sinθ
  3. r=1+2sinθ
  4. r=12sinθ

15.

  1. Graph the following roses and compare. How is the number of petals related to the value of n in the equation r=asinnθ?
    r=sin2θ,  r=sin3θ,  r=sin4θ,  r=sin5θ
  2. For each graph above, list the values of θ where the tips of the petals occur.
  3. Graph r=asin3θ  for a=1,2, and 3. How does the value of a affect the graph?

16.

  1. Graph the following roses and compare. How is the number of petals related to the value of n in the equation r=acosnθ?
    r=cos2θ,  r=cos3θ,  r=cos4θ,  r=cos5θ
  2. For each graph above, list the values of θ where the tips of the petals occur.
  3. Graph r=acos3θ  for a=1,2, and 3. How does the value of a affect the graph?

17.

  1. Solve r2=9cos2θ  for r. (You should get two equations for r.)
  2. Graph both equations together. Change θstep to 0.02 to see the whole graph.
  3. How does the value of a affect the graph of r2=a2cos2θ?

18.

  1. Solve r2=9cos2θ  for r. (You should get two equations for r.)
  2. Graph both equations together. Change θstep to 0.02 to see the whole graph.
  3. How does this graph differ from the graph in Problem 17?

19.

Graph the Archimedean spiral r=θ. Set your window to

[latex]θmin=0          θmax=8πXmin=20    Xmax=20Ymin=20    Ymax=20

Then graph by pressing Zoom 5.

20.

Graph the logarithmic spiral r=e0.2θ. Set your window to

[latex]θmin=0          θmax=8πXmin=100    Xmax=100Ymin=100    Ymax=100

Then graph by pressing Zoom 5.

21.

    1. Complete the table and graph the equation y=sin3θ in Cartesian coordinates, for 0θ2π.
      θ 000 000 000 000 000 000 000 000 000
      3θ 0 π4 π2 3π4 π 5π4 3π2 7π4 2π
      y 000 000 000 000 000 000 000 000 000

Complete the table and graph the equation r=sin3θ in polar coordinates for 0θ2π.

θ 000 000 000 000 000 000 000 000 000
3θ 0 π4 π2 3π4 π 5π4 3π2 7π4 2π
r 000 000 000 000 000 000 000 000 000

22.

    1. Complete the table and graph the equation y=cos2θ in Cartesian coordinates for 0θ2π.
      θ 000 000 000 000 000 000 000 000 000
      2θ 0 π4 π2 3π4 π 5π4 3π2 7π4 2π
      y 000 000 000 000 000 000 000 000 000

Complete the table and graph the equation r=cos2θ in polar coordinates for 0θ2π.

θ 000 000 000 000 000 000 000 000 000
2θ 0 π4 π2 3π4 π 5π4 3π2 7π4 2π
r 000 000 000 000 000 000 000 000 000

23.

    1. Complete the table and graph the equation y=2+2cosθ in Cartesian coordinates for 0θ2π.
      θ 0 π4 π2 3π4 π 5π4 3π2 7π4 2π
      y 000 000 000 000 000 000 000 000 000

Complete the table and graph the equation r=2+2cosθ in polar coordinates for 0θ2π.

θ 0 π4 π2 3π4 π 5π4 3π2 7π4 2π
r 000 000 000 000 000 000 000 000 000

24.

    1. Complete the table and graph the equation y=1sinθ in Cartesian coordinates for 0θ2π.
      θ 0 π4 π2 3π4 π 5π4 3π2 7π4 2π
      y 000 000 000 000 000 000 000 000 000

Complete the table and graph the equation r=1sinθ in polar coordinates for 0θ2π.

θ 0 π4 π2 3π4 π 5π4 3π2 7π4 2π
r 000 000 000 000 000 000 000 000 000

Exercise Group

For Problems 25–42, use the catalog of polar graphs to help you identify and sketch the following curves. Check your work by graphing with a calculator.

25.

r=3cosθ

26.

r=2sinθ

27.

θ=π4

28.

θ=4π3

29.

r=4

30.

r=2

31.

r=2+2sinθ

32.

r=3+3cosθ

33.

r=2cosθ

34.

r=13sinθ

35.

r=3sin2θ

36.

r=2cos3θ

37.

r=2cos5θ

38.

r=4sin4θ

39.

r=2+3sinθ

40.

r=3+2sinθ

41.

r2=cos2θ

42.

r2=4sin2θ

Exercise Group

For Problems 43–52, identify each curve and graph it.

43.

rcscθ=2

44.

r=2secθ

45.

r2=4, 0θ3π4

46.

θ=π4, |r|<2

47.

r=sinθ, 3π4θ5π4

48.

r=cosθ, 0θπ2

49.

r=2sin2θcos2θ

50.

r=cos2θsin2θ

51.

r(1cosθ)=sin2θ

52.

rsecθ=secθtanθ

Exercise Group

For Problems 53–58, graph the following polar curves. Do you recognize them?

53.

r=21cosθ

54.

r=62+sinθ

55.

r=22cosθ

56.

r=11+sinθ

57.

r=11+2sinθ

58.

r=323cosθ

Exercise Group

For Problems 59–66, write a polar equation for the graph.

59.

cardioid

60.

cardioid

61.

five-petal rose

62.

four-petal rose

63.

circle

64.

circle

65.

limacon

66.

limacon

Exercise Group

For Problems 67–74, find the coordinates of the intersection points of the two curves analytically. Then graph the curves to verify your answers.

67.

r=cosθ, r=1cosθ

68.

r=sinθ, r=cosθ

69.

r=3sinθ, r=3cosθ

70.

r=sin2θ, r=cos2θ

71.

r=1, r=1cosθ

72.

r=3cosθ, r=1+cosθ

73.

r=2+sinθ, r=2cosθ

74.

r=sinθ, r=sin2θ

Exercise Group

For Problems 75–82, graph the polar curve.

75.

r2=tanθ

76.

r2=cotθ

77.

r=cscθ2 (conchoid)

78.

r=tanθ (kappa curve)

79.

r=cos2θsecθ (strophoid)

80.

r=sinθtanθ (cissoid)

81.

r=1θ

82.

r=cos θ2, 0θ4π

83.

Graph the polar curves r=12sinnθ for n=2,3,4,5,6. Explain how the value of the parameter n affects the curve.

84.

Graph the polar curves r=13cosnθ for n=2,3,4,5,6. Explain how the value of the parameter n affects the curve.

License

Icon for the Creative Commons Attribution-ShareAlike 4.0 International License

Trigonometry Copyright © 2024 by LOUIS: The Louisiana Library Network is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License, except where otherwise noted.