"

Chapter 5: Equations and Identities

Exercises: 5.2 Solving Equations

                          Skills

Practice each skill in the Homework Problems listed:

  1. Use reference angles
  2. Solve equations by trial and error
  3. Use graphs to solve equations
  4. Solve trigonometric equations for exact values
  5. Use a calculator to solve trigonometric equations
  6. Solve trigonometric equations that involve factoring

 

Suggested Problems

Problems: #4, 8, 12, 16, 26, 30, 46, 38, 50, 56, 64

Exercises Homework 5.2

Exercise Group

For Problems 1–4, find the reference angle. (If you would like to review reference angles, see Section 4.1.)

1.

[latex]250°[/latex]

2.

[latex]145°[/latex]

3.

[latex]320°[/latex]

4.

[latex]-110°[/latex]

Exercise Group

For Problems 5–8, find an angle in each quadrant with the given reference angle.

5.

[latex]18°[/latex]

6.

[latex]35°[/latex]

7.

[latex]52°[/latex]

8.

[latex]78°[/latex]

Exercise Group

For Problems 9–14,

  1. Evaluate the expression at the given values of the variable.
  2. Give one solution of the equation.
9.
  1. [latex]\displaystyle x^3 - 3x^2 + 4;~~~x = -1, 0, 1, 2, 3[/latex]
  2. [latex]\displaystyle x^3 - 3x^2 + 4 = 0[/latex]
10.
  1. [latex]\displaystyle \\\sqrt{x} + \\\sqrt{2x+1};~~~x = 0, 2, 4, 6[/latex]
  2. [latex]\displaystyle \\\sqrt{x} + \\\sqrt{2x+1} = 5[/latex]
11.
  1. [latex]\displaystyle \sin \theta + \cos \theta;~~~\theta = 0°, 30°, 45°, 60°[/latex]
  2. [latex]\displaystyle \sin \theta + \cos \theta = \\\sqrt{2}[/latex]
12.
  1. [latex]\displaystyle \sin^2 \alpha - \cos \alpha;~~~\alpha = 45°, 90°, 135°, 180°[/latex]
  2. [latex]\displaystyle \sin^2 \alpha - \cos \alpha = 1[/latex]
13.
  1. [latex]\displaystyle \sin \beta + 2\cos^2 \beta;~~~\beta = 210°, 225°, 240°, 270°[/latex]
  2. [latex]\displaystyle \sin \beta + 2\cos^2 \beta = -1[/latex]
14.
  1. [latex]\displaystyle 3\cos^2 \phi - \sin^2 \phi;~~~\phi = 270°, 300°, 315°, 330°[/latex]
  2. [latex]\displaystyle 3\cos^2 \phi - \sin^2 \phi = 2[/latex]

Exercise Group

For Problems 15–18, use a graph to solve the equation. Check your solution by substitution.

15.

[latex]\dfrac{-1}{3}x^2 + \dfrac{2}{3}x + 5 = 0[/latex]

16.

[latex]0.0625x^2 + 0.5 x = -1[/latex]

17.

[latex]x^3 + 2x^2 - 6 = 2x^2 + 7x[/latex]

18.

[latex]8 - 12x + 6x^2 - x^3[/latex]

Exercise Group

For Problems 19–32, solve the equation exactly for [latex]0° \le\theta\lt 360°{.}[/latex]

19.

[latex]3\tan \theta = \\\sqrt{3}[/latex]

20.

[latex]7\sin \theta + 11 = 11[/latex]

21.

[latex]3 = 5 - 4\cos \theta[/latex]

22.

[latex]6\tan \theta + 21 = 15[/latex]

23.

[latex]8\sin \theta + 5 = 1[/latex]

24.

[latex]9\cos \theta + 15 = 6[/latex]

25.

[latex]0 = \\\sqrt{2} + 2\sin \theta[/latex]

26.

[latex]\\\sqrt{3}\cos \theta = -\dfrac{3}{2}[/latex]

27.

[latex]\cos^2 \theta - 1 = 0[/latex]

28.

[latex]1 - \sin^2 \theta = 0[/latex]

29.

[latex]4\sin^2 \theta - 3 = 0[/latex]

30.

[latex]0 = 1 - 2\cos^2 \theta[/latex]

31.

[latex]1 - \tan^2 \theta = 0[/latex]

32.

[latex]0 = 6 \tan^2 \theta - 2[/latex]

Exercise Group

For Problems 33–38, solve the equation for [latex]0° \le\theta\lt 360°{.}[/latex] Round your answers to two decimal places.

33.

[latex]\dfrac{1}{2}\tan \theta - 1 = -3[/latex]

34.

[latex]3\tan \theta - 2 = 4[/latex]

35.

[latex]3 = 5\cos \theta[/latex]

36.

[latex]4 = 6\sin \theta[/latex]

37.

[latex]7 \sin \theta + 2 = 1[/latex]

38.

[latex]2 = 5 - \dfrac{1}{3} \tan \theta[/latex]

Exercise Group

For Problems 39–46, use a graph to estimate the solutions for angles between [latex]0°[/latex] and [latex]360°{.}[/latex] Solve the equation algebraically.

39.

[latex]7 - \tan A = 8[/latex]

40.

[latex]6 = 8\tan w - 2[/latex]

41.

[latex]5 = 1 - 8\sin \phi[/latex]

42.

[latex]9 - 4\sin t = 13[/latex]

43.

[latex]2\cos B - 2 = -2[/latex]

44.

[latex]2 - 6\cos u = 5[/latex]

45.

[latex]3 = 2\sin \theta + 4[/latex]

46.

[latex]5 = 3\cos x + 5[/latex]

Exercise Group

For Problems 47–52, use a graph to estimate the solutions for angles between [latex]0°[/latex] and [latex]360°{.}[/latex] Solve the equation algebraically, rounding angles to the nearest degree.

47.

[latex]8\sin t + 7 = 4[/latex]

48.

[latex]9 - 6\cos A = 5[/latex]

49.

[latex]5\tan B - 4 = -2[/latex]

50.

[latex]3 - 10\tan C = -11[/latex]

51.

[latex]1 + 6\cos \phi = -4[/latex]

52.

[latex]4\sin u - 2 = -1[/latex]

Exercise Group

For Problems 53–64, solve the equation for [latex]0° \le\theta\le 360°{.}[/latex] Round angles to two decimal places.

53.

[latex]6\cos^2 \theta = 2[/latex]

54.

[latex]2 - 7\sin^2 \phi = 1[/latex]

55.

[latex]5\sin^2 \theta + \sin \theta = 0[/latex]

56.

[latex]4\tan^2 \theta = \tan \theta[/latex]

57.

[latex]2\cos^2 \theta + \cos \theta - 1 = 0[/latex]

58.

[latex]\tan^2 \theta - 5\tan \theta + 6 = 0[/latex]

59.

[latex]6\tan^2 \theta - \tan \theta - 1 = 0[/latex]

60.

[latex]10\cos^2 \theta - 7 \cos \theta + 1 = 0[/latex]

61.

[latex]\tan^2 \theta - 2\tan \theta = 15[/latex]

62.

[latex]\tan \theta = \tan^2 \theta - 0[/latex]

63.

[latex]\cos^2 \theta - 4\cos \theta + 3 = 0[/latex]

64.

[latex]\sin^2 \theta + 8\sin \theta + 7 = 0[/latex]

Exercise Group

For Problems 65–68, use Snell’s Law to answer the question.

65.

A light ray passes from water to glass, with a [latex]19°[/latex] angle of incidence. What is the angle of refraction?

66.

A light ray passes from water to glass, with an [latex]82°[/latex] angle of incidence. What is the angle of refraction?

67.

A light ray passes from water to glass, with a [latex]32°[/latex] angle of refraction. What is the angle of incidence?

68.

A light ray passes from water to glass, with a [latex]58°[/latex] angle of refraction. What is the angle of incidence?

69.

  1. Use your calculator to graph the function [latex]y = \tan \theta[/latex] in the ZTrig window (press [latex]\boxed{{ZOOM}}~ \boxed{{7}}[/latex]), along with the horizontal line [latex]y = 2{.}[/latex] Use the intersect feature to verify that the solutions of the equation [latex]\tan \theta = 2[/latex] differ by [latex]180°{.}[/latex]
  2. Repeat part (a) with the horizontal line [latex]y = -2[/latex] to verify that the solutions of the equation [latex]\tan \theta = -2[/latex] differ by [latex]180°{.}[/latex]

70.

  1. What is the angle in the third quadrant with reference angle [latex]\theta[/latex]? Show this angle differs by [latex]180°{.}[/latex] Explain how this fact shows that the solutions of [latex]\tan \theta = k{,}[/latex] for [latex]k \gt 0{,}[/latex] differ by [latex]180°{.}[/latex]
  2. What is the angle in the second quadrant with reference angle [latex]\theta[/latex]? What is the angle in the fourth quadrant with reference angle [latex]\theta[/latex]? Show that these two angles differ by [latex]180°{.}[/latex] Explain how this fact shows that the solutions [latex]\tan \theta = k{,}[/latex] for [latex]k \lt 0{,}[/latex] differ by [latex]180°{.}[/latex]

License

Icon for the Creative Commons Attribution-ShareAlike 4.0 International License

Trigonometry Copyright © 2024 by LOUIS: The Louisiana Library Network is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License, except where otherwise noted.