1.
[latex]\sin 4x = -1[/latex]
Chapter 7: Circular Functions
Suggested Problems
For Problems 1–10,
[latex]\sin 4x = -1[/latex]
[latex]\cos 3t = 0[/latex]
[latex]5\tan 2q = 0[/latex]
[latex]6\sin 4w = -3\sqrt{2}[/latex]
[latex]4\cos 3\phi = -2[/latex]
[latex]\sqrt{3}\tan 2\alpha = 3[/latex]
[latex]2\sin 2\beta = 1[/latex]
[latex]-6\cos 2\theta = 6[/latex]
[latex]3\tan 3w = \sqrt{3}[/latex]
[latex]2\tan 3u = -2[/latex]
For Problems 11–20, find all solutions between [latex]0[/latex] and [latex]2\pi{.}[/latex] Round your answers to three decimal places.
[latex]9\cos 2\theta + 1 = 6[/latex]
[latex]7\cos 2t-3=2[/latex]
[latex]8\tan 4t+1=-11[/latex]
[latex]3=3\tan 4x+4[/latex]
[latex]5\sin 3\theta -3=-4[/latex]
[latex]150\sin 3s = 27[/latex]
[latex]6\cos 2r+2=3[/latex]
[latex]2-8\cos 3t=-4[/latex]
[latex]\dfrac{5}{7} \tan \pi x +11=11[/latex]
[latex]2\tan 2\pi \beta + 5 = 3[/latex]
For Problems 21–28, use a substitution to find exact values for all solutions between [latex]0[/latex] and [latex]2\pi{.}[/latex]
[latex]2-\tan\left(2x-\dfrac{\pi}{3}\right)=2[/latex]
[latex]2\cos\left(3t+\dfrac{\pi}{4}\right)=\sqrt{3}[/latex]
[latex]6\cos\left(3\theta-\dfrac{\pi}{2}\right) = -3\sqrt{2}[/latex]
[latex]8\sin \left(2\theta - \dfrac{\pi}{6}\right)=-4[/latex]
[latex]7\sin \left(\dfrac{\phi}{2}+\dfrac{3\pi}{4}\right)+3=-4[/latex]
[latex]3\tan\left(\dfrac{w}{2}+\dfrac{\pi}{4}\right)+4=1[/latex]
[latex]160\sin(\pi \phi -1)+10=90[/latex]
[latex]200\sin \left(\pi t +6\right)-10=-110[/latex]
For Problems 29–42, use a substitution to find all solutions between [latex]0[/latex] and [latex]2\pi{.}[/latex] Round your answers to hundredths.
[latex]16\cos(3t-1)+4=-8[/latex]
[latex]3-5\cos (2\phi -1)=6[/latex]
[latex]23-24\tan(\pi x+2)=17[/latex]
[latex]14\tan (\pi \beta -4)+31=10[/latex]
[latex]120\sin\left(\dfrac{\pi}{3}(t-0.2)\right)+21=-3[/latex]
[latex]9\sin \left(\dfrac{\pi}{2}(t-1)\right)+5=-1[/latex]
[latex]5\sin\left(3w-\dfrac{\pi}{3}\right)+1=4[/latex]
[latex]8\tan \left(4t-\dfrac{\pi}{3}\right)-24=1[/latex]
[latex]16\cos\left(\dfrac{\pi}{2}(t+0.3)\right)-7=5[/latex]
[latex]5\cos \left(\dfrac{\pi}{4}\left(t+\dfrac{1}{4}\right)\right)+3=2[/latex]
[latex]6\tan\left(\dfrac{\pi}{3}(\theta - 1)\right)+4=5[/latex]
[latex]1.5\sin \left(\dfrac{\pi}{2}(\alpha + 0.1)\right)+0.4=0.1[/latex]
[latex]5-3\cos\left(\dfrac{\pi}{6}(w+0.1)\right)=4[/latex]
[latex]0.34\cos (2\pi(\alpha-0.2))=0.085[/latex]
The population of deer in Marquette County over the course of a typical year can be approximated by a sinusoidal function. The population reached a maximum of 50,000 deer on September 1 and a minimum of 42,000 deer on March 1.
The percent of the moon visible from earth is a sinusoidal function ranging from 0% to 100%, with a period of 29.5 days.
A Ferris wheel has a diameter of 20 meters and completes one revolution every 60 seconds. Delbert is at the lowest position of the Ferris wheel, 1 meter above ground, when [latex]t=0[/latex] seconds.
High tides occur every 12.2 hours at Point Lookout. The depth of the water at the end of David’s dock is 2.6 meters at high tide and 1.8 meters at low tide.