Chapter 8: More Functions and Identities

Exercises: 8.1 Sum and Difference Formulas

SKILLS

Practice each skill in the Homework Problems listed.

  1. Find trig values for the negative of an angle #1–6
  2. Verify or disprove possible formulas #7–12, 31–42, 73–76, 79–88
  3. Find exact values for trigonometric functions #13–24, 55–62
  4. Simplify or expand expressions #25–30, 43–54
  5. Solve equations #63–72
  6. Prove standard identities #77–78, 89–91

 

Suggested Homework

Problems: #4, 8, 36, 40, 76, 82, 84, 18, 22, 56, 26, 44, 48, 52, 64, 70, 78

 

Exercises for 8.1 Sum and Difference Formulas

Exercise Group

For Problems 1–8, answer true or false.

1.

[latex]\sin \left(\beta + \dfrac{\pi}{4}\right)=\sin \beta + \dfrac{1}{\sqrt{2}}[/latex]

2.

[latex]\cos \left(\dfrac{\pi}{3} - t\right)=\dfrac{1}{2}-\cos t[/latex]

3.

[latex]\tan (z-w)=\dfrac{\sin (z-w)}{\cos (z-w)}[/latex]

4.

[latex]\sin 2\phi = 1 - \cos 2\phi[/latex]

5.

[latex]\sin \left(\dfrac{\pi}{2}-x\right)=1-\sin x[/latex]

6.

[latex]\sin (\pi - x)=\sin x[/latex]

7.

[latex]\cos^2 \alpha - \sin^2 \alpha = -1[/latex]

8.

[latex]\tan^{-1} s = \dfrac{1}{\tan s}[/latex]

9.

If [latex]\sin x = -0.4[/latex] and [latex]\cos x \gt 0,[/latex] find an exact value for [latex]\cos \left(x + \dfrac{3\pi}{4}\right)\text{.}[/latex]

10.

If [latex]\cos x = -0.75[/latex] and [latex]\sin x \lt 0,[/latex] find an exact value for [latex]\cos \left(x - \dfrac{4\pi}{3}\right)\text{.}[/latex]

11.

If [latex]\cos \theta = \dfrac{-3}{8},~ \pi \lt \theta \lt \dfrac{3\pi}{2},[/latex] and [latex]\sin \phi = \dfrac{1}{4},~ \dfrac{\pi}{2} \lt \phi \lt \pi,[/latex] find exact values for

  1. [latex]\displaystyle \sin (\theta + \phi)[/latex]
  2. [latex]\displaystyle \tan (\theta + \phi)[/latex]

12.

If [latex]\sin \rho = \dfrac{5}{6},~ \dfrac{\pi}{2} \lt \rho \lt \pi,[/latex] and [latex]\cos \mu = \dfrac{-1}{3},~ \dfrac{\pi}{2} \lt \mu \lt \pi,[/latex] find exact values for

  1. [latex]\displaystyle \cos (\rho - \mu)[/latex]
  2. [latex]\displaystyle \tan (\rho - \mu)[/latex]

13.

If [latex]\tan (x + y) =2[/latex] and [latex]\tan y = \dfrac{1}{3},[/latex] find [latex]\tan x\text{.}[/latex]

14.

If [latex]\tan (x - y) =\dfrac{1}{4}[/latex] and [latex]\tan x = 4,[/latex] find [latex]\tan y\text{.}[/latex]

Exercise Group

For Problems 15-16, use the sum and difference formulas to expand each expression.

15.

[latex]\tan \left(t - \dfrac{5\pi}{3}\right)[/latex]

16.

[latex]\cos \left(s+ \dfrac{7\pi}{4}\right)[/latex]

Exercise Group

For Problems 17–18, use the figure to find the trigonometric ratios.
triangle

17.
  1. [latex]\displaystyle \sin \theta[/latex]
  2. [latex]\displaystyle \cos \theta[/latex]
  3. [latex]\displaystyle \tan \theta[/latex]
  4. [latex]\displaystyle \sin 2\theta[/latex]
  5. [latex]\displaystyle \cos 2\theta[/latex]
  6. [latex]\displaystyle \tan 2\theta[/latex]
18.
  1. [latex]\displaystyle \sin \phi[/latex]
  2. [latex]\displaystyle \cos \phi[/latex]
  3. [latex]\displaystyle \tan \phi[/latex]
  4. [latex]\displaystyle \sin 2\phi[/latex]
  5. [latex]\displaystyle \cos 2\phi[/latex]
  6. [latex]\displaystyle \tan 2\phi[/latex]

Exercise Group

For Problems 19–24, use identities to simplify each expression.

19.

[latex]\sin 4x \cos 5x + \cos 4x \sin 5x[/latex]

20.

[latex]\cos 3\beta \cos 1.5 - \sin 3\beta \sin 1.5[/latex]

21.

[latex]\dfrac{\tan 2\phi - \tan 2}{1 + \tan 2\phi \tan 2}[/latex]

22.

[latex]\dfrac{\tan \dfrac{5\pi}{9} - \tan \dfrac{2\pi}{9}}{1 + \tan \dfrac{5\pi}{9} \tan \dfrac{2\pi}{9}}[/latex]

23.

[latex]2\sin 4\theta \cos 4\theta[/latex]

24.

[latex]1-2\sin^2 3\phi[/latex]

Exercise Group

For Problems 25–26,

  1. Use identities to rewrite the equation in terms of a single angle.
  2. Solve. Give exact solutions between [latex]0[/latex] and [latex]2\pi\text{.}[/latex]
25.

[latex]\cos 2\theta - \sin \theta = 1[/latex]

26.

[latex]\tan 2z + \tan z = 0[/latex]

Exercise Group

For Problems 27–28, graph the function and decide if it has an inverse function.

27.

[latex]f(x) = 4x - x^3[/latex]

28.

[latex]g(x) = 5 + \sqrt[3]{x - 2}[/latex]

Exercise Group

For Problems 29–30, give exact values in radians.

29.
  1. [latex]\displaystyle \tan^{-1}(-\sqrt{3})[/latex]
  2. [latex]\displaystyle \arccos \left(-\dfrac{1}{2}\right)[/latex]
30.
  1. [latex]\displaystyle \arcsin (-1)[/latex]
  2. [latex]\displaystyle \cos^{-1}(-1)[/latex]

31.

An IMAX movie screen is 52.8 feet high.

  1. If your line of sight is level with the bottom of the screen, write an expression for the angle subtended by the screen when you sit [latex]x[/latex] feet away.
  2. Evaluate your expression for [latex]x = 20[/latex] feet and for [latex]x = 100[/latex] feet.

32.

Rembrandt’s painting The Night Watch measures 13 feet high by 16 feet wide.

  1. Write an expression for the angle subtended by the width of the painting if you sit [latex]d[/latex] feet back from the center of the painting.
  2. Evaluate your expression for [latex]d = 10[/latex] feet and for [latex]d = 25[/latex] feet.

Exercise Group

For Problems 33–34, solve for [latex]\theta\text{.}[/latex]

33.

[latex]v_y = v_0\sin \theta - gt[/latex]

34.

[latex]\Delta W = -q_0 E\cos (\pi - \theta)\Delta l[/latex]

Exercise Group

For Problems 35–36, find exact values without using a calculator.

35.

[latex]\cos\left[\tan^{-1}\left(\dfrac{-\sqrt{5}}{2}\right)\right][/latex]

36.

[latex]\tan\left[\sin^{-1}\left(\dfrac{2}{7}\right)\right][/latex]

Exercise Group

For Problems 37–38, simplify the expression.

37.

[latex]\sin(\cos^{-1}2t)[/latex]

38.

[latex]\tan(\cos^{-1}m)[/latex]

39.

Explain why one of the expressions [latex]\sin^{-1}x[/latex] or [latex]\sin^{-1}\left(\dfrac{1}{x}\right)[/latex] must be undefined.

40.

Does [latex]\sin^{-1}(-x) = -\sin^{-1}(x)\text{?}[/latex] Does [latex]\cos^{-1}(-x) = -\cos^{-1}(x)\text{?}[/latex]

Exercise Group

For Problems 41–42, evaluate. Round answers to 3 decimal places if necessary.

41.
  1. [latex]\displaystyle \csc 27°[/latex]
  2. [latex]\displaystyle \sec 108°[/latex]
  3. [latex]\displaystyle \cot 245°[/latex]
42.
  1. [latex]\displaystyle \csc 5.3[/latex]
  2. [latex]\displaystyle \cot 0.98[/latex]
  3. [latex]\displaystyle \sec 2.17[/latex]

Exercise Group

For Problems 43–50, find all six trigonometric ratios for the angle [latex]\theta\text{.}[/latex]

43.

triangle

44.

triangle

45.

angle

46.

angle

47.

angle

48.

angle

49.

[latex]6\cos \alpha = -5\text{,}[/latex] [latex]~ 180° \lt \alpha \lt 270°[/latex]

50.

[latex]4\sin \theta = 3,~ \theta[/latex] is obtuse

Exercise Group

For Problems 51–56, write algebraic expressions for the six trigonometric ratios of the angle.

51.

triangle

52.

triangle

53.

triangle

54.

triangle

55.

[latex]2\sin \alpha - k = 0,~\dfrac{\pi}{2} \lt \alpha \lt \pi[/latex]

56.

[latex]h\cos \beta - 3 = 0,~\dfrac{3\pi}{2} \lt \beta \lt 2\pi[/latex]

Exercise Group

For Problems 57–58, find all six trigonometric ratios of the arc [latex]\theta\text{.}[/latex] Round to two places.

57.

circle

58.

circle

Exercise Group

For Problems 59–62, evaluate exactly.

59.

[latex]4\cot \dfrac{3\pi}{4} - \sec^2 \dfrac{\pi}{3}[/latex]

60.

[latex]\dfrac{1}{2}\csc \dfrac{2\pi}{3} + \tan^2 \dfrac{5\pi}{6}[/latex]

61.

[latex]\csc \dfrac{7\pi}{6}\cos \dfrac{5\pi}{4}[/latex]

62.

[latex]\sec \dfrac{7\pi}{4}\cot \dfrac{4\pi}{3}[/latex]

Exercise Group

For Problems 63–64, find all solutions between [latex]0[/latex] and [latex]2\pi\text{.}[/latex] Round your solutions to tenths.

63.

[latex]3\csc \theta + 2 = 12[/latex]

64.

[latex]5\cot \theta + 15 = -3[/latex]

Exercise Group

For Problems 65–70, sketch a graph of each function. Then choose the function or functions described by each statement.

[latex]y = \sec x ~~~~~~~~~~~ y = \csc x ~~~~~~~~~~~ y = \cot x[/latex]

[latex]y = \cos^{-1} x ~~~~~~~~ y = \sin^{-1} x ~~~~~~ y = \tan^{-1} x[/latex]

65.

The graph has vertical asymptotes at multiples of [latex]\pi\text{.}[/latex]

66.

The graph has a horizontal asymptote at [latex]\dfrac{\pi}{2}\text{.}[/latex]

67.

The function values are the reciprocals of [latex]y = \cos x\text{.}[/latex]

68.

The function is defined only for [latex]x[/latex]-values between [latex]-1[/latex] and [latex]1\text{,}[/latex] inclusive.

69.

None of the function values lie between [latex]-1[/latex] and [latex]1\text{.}[/latex]

70.

The graph includes the origin.

Exercise Group

For Problems 71–74,

  1. Graph the function on the interval [latex]-2\pi \le\ x \le 2\pi\text{,}[/latex] and use the graph to write the function in a simpler form.
  2. Verify your conjecture algebraically.
71.

[latex]f(x)=\tan x(\cos x - \cot x)[/latex]

72.

[latex]g(x)=\csc x - \cot x\cos x[/latex]

73.

[latex]G(x) = \sin x(\sec x - \csc x)[/latex]

74.

[latex]F(x) = \dfrac{1}{2}\left(\dfrac{\cos x}{1+\sin x} + \dfrac{1+ \sin x}{\cos x}\right)[/latex]

Exercise Group

For Problems 75–78, simplify the expression.

75.

[latex]1-\dfrac{\sin x}{\csc x}[/latex]

76.

[latex]\dfrac{\sin x}{\csc x}+\dfrac{\cos x}{\sec x}[/latex]

77.

[latex]\dfrac{2+\tan^2 B}{\sec^2 B} - 1[/latex]

78.

[latex]\dfrac{\csc t}{\tan t + \cot t}[/latex]

Exercise Group

For Problems 79–82, use the suggested substitution to simplify the expression.

79.

[latex]\dfrac{\sqrt{16+x^2}}{x},~~x = 4\tan \theta[/latex]

80.

[latex]x\sqrt{4-x^2},~~x=2\sin \theta[/latex]

81.

[latex]\dfrac{x^2 - 3}{x},~~x=\sqrt{3}\sec \theta[/latex]

82.

[latex]\dfrac{x}{\sqrt{x^2+2}},~~x=\sqrt{2}\tan \theta[/latex]

83

This problem outlines a geometric proof of difference of angles formula for tangent.

  1. In the figure below left, [latex]\alpha=\angle ABC[/latex] and [latex]\beta = \angle DBC\text{.}[/latex] Write expressions in terms of [latex]\alpha[/latex] and [latex]\beta[/latex] for the sides [latex]AC,~DC,[/latex] and [latex]AD\text{.}[/latex]triangles
  2. In the figure above right, explain why [latex]\triangle ABC[/latex] is similar to [latex]\triangle FBE\text{.}[/latex]
  3. Explain why [latex]\angle FDC = \alpha\text{.}[/latex]
  4. Write an expression in terms of [latex]\alpha[/latex] and [latex]\beta[/latex] for side [latex]CF\text{.}[/latex]
  5. Explain why [latex]\triangle FBE[/latex] is similar to [latex]\triangle ADE\text{.}[/latex]
  6. Justify each equality in the statement
    [latex]\tan (\alpha - \beta) = \dfrac{DE}{BE} = \dfrac{AD}{BF} = \dfrac{\tan \alpha - \tan \beta}{1+\tan \alpha \tan \beta}[/latex]

84.

Let [latex]L_1[/latex] and [latex]L_2[/latex] be two lines with slopes [latex]m_1[/latex] and [latex]m_2\text{,}[/latex] respectively, and let [latex]\theta[/latex] be the acute angle formed between the two lines. Use an identity to show that

[latex]\tan \theta = \dfrac{m_2-m_1}{1+m_1m_2}[/latex]

Exercise Group

For Problems 85–86, use the fact that if [latex]\theta[/latex] is one angle of a triangle and [latex]s[/latex] is the length of the opposite side, then the diameter of the circumscribing circle is

[latex]d=s \csc \theta[/latex]

Round your answers to the nearest hundredth.

circle circumscribing a triangle

85.

In the figure above, find the diameter of the circumscribing circle, the angle [latex]\alpha\text{,}[/latex] and the sides [latex]a[/latex] and [latex]b\text{.}[/latex]

86.

A triangle has one side of length 17 cm and the angle opposite is [latex]26°\text{.}[/latex] Find the diameter of the circle that circumscribes the triangle.

 

1.

  1. Sketch an angle [latex]\alpha[/latex] in standard position, with [latex]\dfrac{\pi}{2} \lt \alpha \lt \pi{.}[/latex] Also sketch the angle [latex]-\alpha{.}[/latex]
  2. Choose a point on the terminal side of [latex]\alpha{,}[/latex] and show that the negative angle identities hold for [latex]\alpha{.}[/latex]

2.

  1. Sketch an angle [latex]\beta[/latex] in standard position, with [latex]\pi \lt \beta \lt \dfrac{3\pi}{2}{.}[/latex] Also sketch the angle [latex]-\beta{.}[/latex]
  2. Choose a point on the terminal side of [latex]\beta[/latex] and show that the negative angle identities hold for [latex]\beta{.}[/latex]

3.

Given that [latex]~~\sin \dfrac{7\pi}{12} = \dfrac{\sqrt{2} + \sqrt{6}}{4}~~{,}[/latex] find [latex]\sin \dfrac{-7\pi}{12}{.}[/latex] Sketch both angles.

4.

Given that [latex]~~\cos \dfrac{7\pi}{12} = \dfrac{\sqrt{2} - \sqrt{6}}{4}~~{,}[/latex] find [latex]\cos \dfrac{-7\pi}{12}{.}[/latex] Sketch both angles.

5.

If [latex]~~\cos(2x-0.3)=0.24~~[/latex] and [latex]~~\sin(2x-0.3) \lt 0~~{,}[/latex] find [latex]\cos(0.3-2x)[/latex] and [latex]\sin(0.3-2x){.}[/latex]

6.

If [latex]~~\sin(1.5-\phi)=-0.28~~[/latex] and [latex]~~\cos(1.5-\phi) \gt 0~~{,}[/latex] find [latex]\sin(\phi-1.5)[/latex] and [latex]\cos(\phi-1.5){.}[/latex]

7.

Show that [latex]\cos(45°+45°)[/latex] is not equal to [latex]\cos 45° + \cos 45°{.}[/latex]

8.

Show that [latex]\tan(60°-30°)[/latex] is not equal to [latex]\tan 60° - \tan 30°{.}[/latex]

9.

Use your calculator to verify that [latex]\tan (87°-29°)[/latex] is not equal to [latex]\tan 87° - \tan 29°{.}[/latex]

10.

Use your calculator to verify that [latex]\cos (52°+64°)[/latex] is not equal to [latex]\cos 52° + \cos 64°{.}[/latex]

11.

Use graphs to show that [latex]\sin\left(x-\dfrac{\pi}{6}\right)[/latex] is not equivalent to [latex]\sin x - \sin\dfrac{\pi}{6}{.}[/latex]

12.

Use graphs to show that [latex]\tan\left(x+\dfrac{\pi}{4}\right)[/latex] is not equivalent to [latex]\tan x + \tan\dfrac{\pi}{4}{.}[/latex]

Exercise Group

For Problems 13–24, find exact values for the trig ratios. (Do not use a calculator!)

13.

Suppose [latex]\cos \alpha = \dfrac{3}{5},~ \sin \alpha = \dfrac{4}{5},~ \cos \beta = \dfrac{5}{13}{,}[/latex] and [latex]\sin \beta = \dfrac{-12}{13}{.}[/latex] Evaluate the following.

  1. [latex]\displaystyle \cos(\alpha + \beta)[/latex]
  2. [latex]\displaystyle \sin(\alpha + \beta)[/latex]
  3. [latex]\displaystyle \tan(\alpha + \beta)[/latex]
14.

Suppose [latex]\cos \alpha = \dfrac{-2}{3},~ \sin \alpha = \dfrac{\sqrt{5}}{3},~ \cos \beta = \dfrac{\sqrt{3}}{2}{,}[/latex] and [latex]\sin \beta = \dfrac{-1}{2}{.}[/latex] Evaluate the following.

  1. [latex]\displaystyle \cos(\alpha - \beta)[/latex]
  2. [latex]\displaystyle \sin(\alpha - \beta)[/latex]
  3. [latex]\displaystyle \tan(\alpha - \beta)[/latex]
15.

If [latex]\tan t = \dfrac{3}{4}[/latex] and [latex]\tan s = \dfrac{-7}{24}{,}[/latex] find exact values for:

  1. [latex]\displaystyle \tan(s+t)[/latex]
  2. [latex]\displaystyle \tan(s-t)[/latex]
16.

If [latex]\tan x = -3[/latex] and [latex]\tan y = -5{,}[/latex] find exact values for:

  1. [latex]\displaystyle \tan(x+y)[/latex]
  2. [latex]\displaystyle \tan(x-y)[/latex]
17.

Suppose [latex]\cos \theta = \dfrac{15}{17}[/latex] and [latex]\sin \phi = \dfrac{3}{5}{,}[/latex] where [latex]\theta[/latex] and [latex]\phi[/latex] are in quadrant I. Evaluate the following.

  1. [latex]\displaystyle \cos(\theta + \phi)[/latex]
  2. [latex]\displaystyle \tan(\theta - \phi)[/latex]
18.

Suppose [latex]\cos \theta = \dfrac{15}{17}{,}[/latex] where [latex]\theta[/latex] is in quadrant IV, and [latex]\sin \phi = \dfrac{3}{5}{,}[/latex] where [latex]\phi[/latex] is in quadrant II. Evaluate the following.

  1. [latex]\displaystyle \sin(\theta - \phi)[/latex]
  2. [latex]\displaystyle \tan(\theta + \phi)[/latex]
19.

If [latex]\sin \alpha = \dfrac{12}{13},~ \dfrac{\pi}{2} \lt\alpha \lt \pi{,}[/latex] and [latex]\cos \beta = \dfrac{-3}{5},~ \pi \lt \beta \lt \dfrac{3\pi}{2}{,}[/latex] find exact values for:

  1. [latex]\displaystyle \sin(\alpha + \beta)[/latex]
  2. [latex]\displaystyle \cos(\alpha + \beta)[/latex]
  3. [latex]\displaystyle \tan(\alpha + \beta)[/latex]
  4. Sketch the angles [latex]\alpha, \beta[/latex] and [latex]\alpha + \beta{.}[/latex]
20.

If [latex]\cos \alpha = \dfrac{3}{8},~ \dfrac{3\pi}{2} \lt\alpha \lt 2\pi{,}[/latex] and [latex]\sin \beta = \dfrac{-1}{4},~ \pi \lt \beta \lt \dfrac{3\pi}{2}{,}[/latex] find exact values for:

  1. [latex]\displaystyle \sin(\alpha - \beta)[/latex]
  2. [latex]\displaystyle \cos(\alpha - \beta)[/latex]
  3. [latex]\displaystyle \tan(\alpha - \beta)[/latex]
  4. Sketch the angles [latex]\alpha, \beta[/latex] and [latex]\alpha - \beta{.}[/latex]
21.

Find the exact values of [latex]\cos 15°[/latex] and [latex]\tan 15°{.}[/latex]

22.

Find the exact values of [latex]\sin 165°[/latex] and [latex]\tan 165°{.}[/latex]

23.

If [latex]\sin \theta = 0.2[/latex] and [latex]\cos \theta \gt 0{,}[/latex] find [latex]\sin \left(\theta + \dfrac{\pi}{3}\right){.}[/latex]

24.

If [latex]\cos \theta = 0.6[/latex] and [latex]\sin \theta \lt 0{,}[/latex] find [latex]\cos \left(\theta + \dfrac{3\pi}{4}\right){.}[/latex]

Exercise Group

For Problems 25–30, use the sum and difference formulas to expand each expression.

25.

[latex]\sin (\theta - 270°)[/latex]

26.

[latex]\cos(270° + \theta)[/latex]

27.

[latex]\cos\left(t + \dfrac{\pi}{6}\right)[/latex]

28.

[latex]\sin \left(t - \dfrac{2\pi}{3}\right)[/latex]

29.

[latex]\tan\left(\beta - \dfrac{\pi}{6}\right)[/latex]

30.

[latex]\tan \left(\phi + \dfrac{\pi}{4}\right)[/latex]

Exercise Group

For Problems 31–34, use the unit circle to estimate trig values. Then verify with your calculator.

unit circle

31.

Does [latex]\sin(2\cdot 80°) = 2\sin 80°{?}[/latex]

32.

Does [latex]\cos(2\cdot 25°) = 2\cos 25°{?}[/latex]

33.

Does [latex]\tan(2\cdot 70°) = 2\tan 70°{?}[/latex]

34.

Does [latex]\tan(2\cdot 100°) = 2\tan 100°{?}[/latex]

Exercise Group

For Problems 35–38, verify that each statement is true.

35.

[latex]\sin 90° = 2\sin 45° \cos 45°[/latex]

36.

[latex]\sin 60° = 2\sin 30° \cos 30°[/latex]

37.

[latex]\cos 60° = \cos^2 30° - \sin^2 30°[/latex]

38.

[latex]\tan 60° = \dfrac{2\tan 30°}{1 - \tan^2 30°}[/latex]

Exercise Group

In Problems 39–42, is the statement true or false? Explain your answer.

39.

If [latex]\cos \alpha = 0.32{,}[/latex] then [latex]\cos 2\alpha = 2(0.32) = 0.64{.}[/latex]

40.

If [latex]\cos 2\beta = 0.86{,}[/latex] then [latex]\cos \beta = 0.43{,}[/latex] so [latex]\beta = \cos^{-1}(0.43){.}[/latex]

41.

If [latex]\sin 2\theta = h{,}[/latex] then [latex]\sin \theta = \dfrac{h}{2}{,}[/latex] so [latex]\theta = \sin^{-1}\left(\dfrac{h}{2}\right){.}[/latex]

42.

If [latex]\cos \phi = r{,}[/latex] then [latex]\cos 2\phi = 2r{.}[/latex]

Exercise Group

For Problems 43–54, use the double angle identities to simplify the expression.

43.

[latex]2\sin 34° \cos 34°[/latex]

44.

[latex]\cos^2 \dfrac{\pi}{10} - \sin^2 \dfrac{\pi}{10}[/latex]

45.

[latex]1 - 2\sin^2 \dfrac{\pi}{16}[/latex]

46.

[latex]2\cos^2 18° - 1[/latex]

47.

[latex]\cos^2 3\theta - \sin^2 3\theta[/latex]

48.

[latex]2\sin 2\alpha \cos 2\alpha[/latex]

49.

[latex]2\sin 5t \cos 5t[/latex]

50.

[latex]\cos^2 4w - \sin^2 4w[/latex]

51.

[latex]\dfrac{2\tan 64°}{1- \tan^2 64°}[/latex]

52.

[latex]\dfrac{2\tan \dfrac{\pi}{3}}{1- \tan^2 \dfrac{\pi}{3}}[/latex]

53.

[latex]2\cos^2 2\beta - 1[/latex]

54.

[latex]1 - 2\sin^2 6s[/latex]

Exercise Group

For Problems 55–58, use the figures to find the trigonometric ratios.

triangles

55.
  1. [latex]\displaystyle \sin \alpha[/latex]

 

  • [latex]\displaystyle \cos \alpha[/latex]
  • [latex]\displaystyle \tan \alpha[/latex]
  • [latex]\displaystyle \sin 2\alpha[/latex]
  • [latex]\displaystyle \cos 2\alpha[/latex]
  • [latex]\displaystyle \tan 2\alpha[/latex]

 

56.
  1. [latex]\displaystyle \sin \beta[/latex]
  2. [latex]\displaystyle \cos \beta[/latex]
  3. [latex]\displaystyle \tan \beta[/latex]
  4. [latex]\displaystyle \sin 2\beta[/latex]
  5. [latex]\displaystyle \cos 2\beta[/latex]
  6. [latex]\displaystyle \tan 2\beta[/latex]
57.
  1. [latex]\displaystyle \sin s[/latex]
  2. [latex]\displaystyle \cos s[/latex]
  3. [latex]\displaystyle \tan s[/latex]
  4. [latex]\displaystyle \sin s[/latex]
  5. [latex]\displaystyle \cos s[/latex]
  6. [latex]\displaystyle \tan s[/latex]
58.
  1. [latex]\displaystyle \sin t[/latex]
  2. [latex]\displaystyle \cos t[/latex]
  3. [latex]\displaystyle \tan t[/latex]
  4. [latex]\displaystyle \sin t[/latex]
  5. [latex]\displaystyle \cos t[/latex]
  6. [latex]\displaystyle \tan t[/latex]

59.

Suppose [latex]\cos \theta = \dfrac{12}{13}[/latex] and [latex]\dfrac{3\pi}{2} \lt \theta \lt 2\pi{.}[/latex] Compute exact values for:

  1. [latex]\displaystyle \sin \theta[/latex]
  2. [latex]\displaystyle \sin 2\theta[/latex]
  3. [latex]\displaystyle \cos 2\theta[/latex]
  4. [latex]\displaystyle \tan 2\theta[/latex]
  5. Sketch the angles [latex]\theta[/latex] and [latex]2\theta{.}[/latex]

60.

Suppose [latex]\sin \phi = \dfrac{5}{6}[/latex] and [latex]\dfrac{\pi}{2} \lt \phi \lt \pi{.}[/latex] Compute exact values for:

  1. [latex]\displaystyle \cos \phi[/latex]
  2. [latex]\displaystyle \sin 2\phi[/latex]
  3. [latex]\displaystyle \cos 2\phi[/latex]
  4. [latex]\displaystyle \tan 2\phi[/latex]
  5. Sketch the angles [latex]\phi[/latex] and [latex]2\phi{.}[/latex]

61.

If [latex]\tan u = -4[/latex] and [latex]270° \lt u \lt 360°{,}[/latex] find exact values for:

  1. [latex]\displaystyle \tan 2u[/latex]
  2. [latex]\displaystyle \cos 2u[/latex]
  3. [latex]\displaystyle \sin 2u[/latex]

62.

If [latex]\tan v = \dfrac{2}{3}[/latex] and [latex]180° \lt u \lt 270°{,}[/latex] find exact values for:

  1. [latex]\displaystyle \tan 2v[/latex]
  2. [latex]\displaystyle \cos 2v[/latex]
  3. [latex]\displaystyle \sin 2v[/latex]

Exercise Group

For Problems 63–72,

  1. Use identities to rewrite the equation in terms of a single angle.
  2. Solve. Give exact solutions between [latex]0[/latex] and [latex]2\pi{.}[/latex]
63.

[latex]\sin 2\theta + \sqrt{2} \cos \theta = 0[/latex]

64.

[latex]\sin 2\alpha \sin \alpha =\cos \alpha[/latex]

65.

[latex]\cos 2t -5\cos t + 3 = 0[/latex]

66.

[latex]\cos 2x + 3\sin x = 2[/latex]

67.

[latex]\tan 2\beta + 2\sin \beta = 0[/latex]

68.

[latex]\tan 2z - 2\cos z = 0[/latex]

69.

[latex]3\cos \phi - \sin \left(\dfrac{\pi}{2} - \phi\right) = \sqrt{3}[/latex]

70.

[latex]\sin w + \cos\left(\dfrac{\pi}{2} - w\right) = 1[/latex]

71.

[latex]\sin 2\phi \cos \phi + \cos 2\phi \sin \phi = 1[/latex]

72.

[latex]\cos \theta \cos 3\theta + \sin \theta \sin 3\theta = \dfrac{\sqrt{2}}{2}[/latex]

73.

Use the sum of angles formulas for sine and cosine to derive a formula for each expression. Then use graphs to verify your formula.

  1. [latex]\displaystyle \cos (\theta + 90°)[/latex]
  2. [latex]\displaystyle \sin (\theta + 90°)[/latex]

74.

Use the sum of angles formulas for sine and cosine to derive a formula for each expression. Then use graphs to verify your formula.

  1. [latex]\displaystyle \cos (\theta + \pi)[/latex]
  2. [latex]\displaystyle \sin (\theta + \pi)[/latex]

75.

Use the difference of angles formulas for sine and cosine to prove that:

  1. [latex]\displaystyle \cos \left(\dfrac{\pi}{2} -\theta\right) = \sin \theta[/latex]
  2. [latex]\displaystyle \sin \left(\dfrac{\pi}{2} -\theta\right) = \cos \theta[/latex]

76.

Use the difference of angles formulas for sine and cosine to derive formulas for:

  1. [latex]\displaystyle \cos \left(\theta - \dfrac{\pi}{2}\right)[/latex]
  2. [latex]\displaystyle \sin \left(\theta - \dfrac{\pi}{2}\right)[/latex]

77.

Prove the double angle identity [latex]\sin 2\theta = 2\sin \theta \cos\theta{.}[/latex] (Hint: Start with the sum of angles formula for sine and replace both [latex]\alpha[/latex] and [latex]\beta[/latex] by [latex]\theta{.}[/latex])

78.

Prove the double angle identity [latex]\cos 2\theta = \cos^2 \theta - \sin^2 \theta{.}[/latex] (Hint: Start with the sum of angles formula for sine and replace both [latex]\alpha[/latex] and [latex]\beta[/latex] by [latex]\theta{.}[/latex])

Exercise Group

For Problems 79–88,

  1. Use graphs to decide if the equation is an identity.
  2. If the equation is not an identity, find a value of the variable that makes the equation false.
79.

[latex]\sin \left(\dfrac{\pi}{2} + \beta\right) = 1 + \sin \beta[/latex]

80.

[latex]\cos \left(\dfrac{\pi}{3} - \beta\right) =\cos \left(\beta - \dfrac{\pi}{3}\right)[/latex]

81.

[latex]\sin(A+180°) = -\sin A[/latex]

82.

[latex]\tan \theta + \tan(-\theta) = 0[/latex]

83.

[latex]\cos 4\theta = 4\cos \theta[/latex]

84.

[latex]\cos\left(\phi + \dfrac{\pi}{3}\right)= \dfrac{1}{2} + \cos \phi[/latex]

85.

[latex]\sin\left(x + \dfrac{\pi}{4}\right) = \dfrac{\sqrt{2}}{2}(\sin x + \cos x)[/latex]

86.

[latex]2\cos\left(x - \dfrac{\pi}{6}\right) = \sin x + \sqrt{3}\cos x[/latex]

87.

[latex]\sin\left(x - \dfrac{\pi}{3}\right) + \cos \left(x + \dfrac{\pi}{6}\right)= 0[/latex]

88.

[latex]\cos 2x = (\cos x + \sin x)(\cos x - \sin x)[/latex]

Exercise Group

Problems 89 and 90 verify the addition and subtraction formulas for acute angles.

89.

The figure below shows a right triangle inscribed in a rectangle.

triangle inscribed in rectangle

  1. Label the legs [latex]l_1[/latex] and [latex]l_2[/latex] of the right triangle with their lengths.
  2. Explain why [latex]\theta_1 = \beta[/latex] and [latex]\theta_2 = \alpha +\beta{.}[/latex] Label the diagram with these angles.
  3. Label the legs [latex]s_1[/latex] and [latex]s_2[/latex] of the bottom triangle with their lengths.
  4. Label the legs [latex]s_3[/latex] and [latex]s_4[/latex] of the top left triangle with their lengths.
  5. Label the legs [latex]s_5[/latex] and [latex]s_6[/latex] of the top right triangle with their lengths.
  6. Use the fact that the opposite sides of a rectangle are equal to state the addition formulas for sine and cosine.
90.

The figure below shows a right triangle inscribed in a rectangle.

triangle inscribed in rectangle

  1. Label the legs [latex]l_1[/latex] and [latex]l_2[/latex] of the right triangle with their lengths.
  2. Explain why [latex]\theta_1 = \beta[/latex] and [latex]\theta_2 = \alpha -\beta{.}[/latex] Label the diagram with these angles.
  3. Label the legs [latex]s_1[/latex] and [latex]s_2[/latex] of the bottom triangle with their lengths.
  4. Label the legs [latex]s_3[/latex] and [latex]s_4[/latex] of the top left triangle with their lengths.
  5. Label the legs [latex]s_5[/latex] and [latex]s_6[/latex] of the top right triangle with their lengths.
  6. Use the fact that the opposite sides of a rectangle are equal to state the subtraction formulas for sine and cosine.

91.

Follow the steps to prove the difference of angles formula for cosine,
[latex]\cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta[/latex]

circle

  1. Write an expression for [latex](AB)^2{,}[/latex] the square of the distance between the points [latex]A[/latex] and [latex]B{,}[/latex] using the law of cosines for [latex]\triangle AOB{.}[/latex]
  2. Write another expression for [latex](AB)^2[/latex] using the distance formula and the coordinates of [latex]A[/latex] and [latex]B{.}[/latex]
  3. Equate the two expressions for [latex](AB)^2[/latex] you obtained in (a) and (b). Simplify the equation to obtain [latex]\cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta{.}[/latex]

 

License

Icon for the Creative Commons Attribution-ShareAlike 4.0 International License

Trigonometry Copyright © 2024 by LOUIS: The Louisiana Library Network is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book