Chapter 3: Laws of Sines and Cosines
Exercises: Chapter 3 Review Problems
Chapter Review Suggested Problems
Problems: #3, 8, 20, 22, 24, 28, 34, 38, 46, 54
Exercises for Chapter 3 Review
Exercise Group
Use facts about supplementary angles to answer the questions in Problems 1 and 2.
1. If
2. If
3. Two sides of a triangle are 12 and 9 units long. The angle
- Sketch the triangle with
in standard position. - What is the area of the triangle?
- Draw another triangle with the same area you found in
and with sides 12 and 9, but with an obtuse angle between those two sides. What is the obtuse angle?
4. A triangle has base 5 units and altitude 6 units, and another side of length 8 units.
- Sketch the triangle so that the acute angle
between the sides of length 5 and 8 is in standard position. - What is the area of the triangle?
- What is
? - Draw another triangle with the same area you found in
and with sides 5 and 8, but with an obtuse angle between those two sides. What is the obtuse angle?
Exercise Group
For Problems 5–12,
- Sketch an angle in standard position with the given properties.
- Find
and - Find the angle
rounded to tenths of a °.
5. The point
6. The point
7. The point on the terminal side 20 units from the origin has
8. The point on the terminal side 25 units from the origin has
9.
10.
11.
12.
Exercise Group
For Problems 13–16, solve the equation. Round to the nearest
13.
14.
15.
16.
Exercise Group
For Problems 17–18,
- Find exact values for the base and height of the triangle.
- Compute an exact value for the area of the triangle.
17.
18.
19. Find the area of the triangular plot of land shown at right if
20. What is the area of the triangular piece of tile shown at right?
Exercise Group
For Problems 21–22, use the law of sines to find the indicated angle. Round to two decimal places.
21.
22.
Exercise Group
For Problems 23–26, use the law of sines to find the indicated side. Round to two decimal places.
23.
24.
25.
26.
Exercise Group
For Problems 27–30, use the law of cosines to find the indicated side. Round to two decimal places.
27.
28.
29.
30.
Exercise Group
For Problems 31–40,
- Sketch the triangle described.
- Find the missing angle or length. Round answers to two decimal places.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
Exercise Group
For Problems 41–46,
- Sketch and label a triangle to illustrate the problem.
- Use the law of sines and/or the law of cosines to answer the questions.
41. A radio tower is 40 miles from an airport, in the direction of
42. As Odysseus begins a sailing journey, an island 2 kilometers distant is in the direction
43. Delbert and Francine are standing 100 meters apart on one side of a stream. A tree lies on the opposite shore. The angle Delbert sees from Francine to the tree is
44. Evel and Carla are estimating the distance across a canyon. They stand 75 meters apart and each sight a larger boulder on the opposite side. Evel measures an angle of
45. A blimp is flying in a straight line toward a football stadium. Giselle and Hakim have homes 520 meters apart, both directly below the blimp’s path. At a moment when the blimp is between them, Giselle measures an angle of elevation to the blimp to be
- How far is the blimp from Giselle?
- How high is the blimp above the ground?
46. A model plane flying in a straight line passes directly over first Adi’s and then Bettina’s heads. Adi sees an angle of elevation of
- How far is the model plane from Bettina?
- How high above the ground is the plane?
47. You are viewing the Statue of Liberty from sea level at a horizontal distance of 65 meters from the point below the torch. Standing on its pedestal above sea level, the statue subtends an angle of
- Find the distance
- What is the angle at
- According to your measurements, how tall is the statue?
48. King Kong is hanging from the top of a building. From a safe distance Sherman measures that Kong subtends an angle of
- What is the angle to the top of the building (or Kong’s highest point)?
- What is the angle
at Kong’s foot? - How long is
the distance from the top of the building to Sherman at - How tall is the building?
Exercise Group
Here is a surveyor’s technique for making a right angle.
- Place two stakes at points
and 5 units apart. - Draw an arc of radius 4 centered at
and an arc of radius 3 centered at - Place a third stake at
the intersection of the two arcs. - Because
the angle at is a right angle.
Of course, the accuracy of the right angle constructed in this way depends on the accuracy of the measurements of length. Problems 49 and 50 refer to the surveyor’s technique.
49. Suppose that you use the surveyor’s technique to create a right angle, but all three of your distance measurements are in error. The actual sides of your triangle are
50. Suppose that you use the surveyor’s technique to create a right angle, but the true distance measurements are
51. Triangle
52. Triangle
53. The hour hand of Big Ben is 9 feet long, and the minute hand is 14 feet long. How far apart are the tips of the two hands at 5:00?
54. The largest clock in the world sits atop the Abraj Al Bait Towers in Mecca, Saudi Arabia. The clock face is 46 meters in diameter, the minute hand is 22 meters long, and the hour hand is 17 meters long. How far apart are the tips of the two hands at 8:00?
55. How far away is a star with a parallax of
56. How far away is a star with a parallax of
Exercise Group
Problems 57–58 provide a geometric interpretation of the law of sines. Recall the fact from geometry that the measure of an angle inscribed in a circle is half the intercepted arc.
57. In the figure, the circle centered at
- If
is the midpoint of explain why - Write
in terms of and the radius (Hint: Use the right triangle and the fact that - Use your equation from
to write in terms of and - Use your equation from
to write the diameter in terms of and
58. Let