"

Chapter 8: More Functions and Identities

Exercises: Chapter 8 Review Problems

Chapter Review Suggested Problems

Problems: #6, 14, 18, 24, 26, 30, 36, 42, 48, 56, 62, 64, 72, 76, 80

 

Exercises for Chapter 8 Review

Exercise Group

For Problems 1–8, answer true or false.

1.

[latex]\sin \left(\beta + \dfrac{\pi}{4}\right)=\sin \beta + \dfrac{1}{\sqrt{2}}[/latex]

2.

[latex]\cos \left(\dfrac{\pi}{3} - t\right)=\dfrac{1}{2}-\cos t[/latex]

3.

[latex]\tan (z-w)=\dfrac{\sin (z-w)}{\cos (z-w)}[/latex]

4.

[latex]\sin 2\phi = 1 - \cos 2\phi[/latex]

5.

[latex]\sin \left(\dfrac{\pi}{2}-x\right)=1-\sin x[/latex]

6.

[latex]\sin (\pi - x)=\sin x[/latex]

7.

[latex]\cos^2 \alpha - \sin^2 \alpha = -1[/latex]

8.

[latex]\tan^{-1} s = \dfrac{1}{\tan s}[/latex]

9.

If [latex]\sin x = -0.4[/latex] and [latex]\cos x \gt 0,[/latex] find an exact value for [latex]\cos \left(x + \dfrac{3\pi}{4}\right)\text{.}[/latex]

10.

If [latex]\cos x = -0.75[/latex] and [latex]\sin x \lt 0,[/latex] find an exact value for [latex]\cos \left(x - \dfrac{4\pi}{3}\right)\text{.}[/latex]

11.

If [latex]\cos \theta = \dfrac{-3}{8},~ \pi \lt \theta \lt \dfrac{3\pi}{2},[/latex] and [latex]\sin \phi = \dfrac{1}{4},~ \dfrac{\pi}{2} \lt \phi \lt \pi,[/latex] find exact values for

  1. [latex]\displaystyle \sin (\theta + \phi)[/latex]
  2. [latex]\displaystyle \tan (\theta + \phi)[/latex]

12.

If [latex]\sin \rho = \dfrac{5}{6},~ \dfrac{\pi}{2} \lt \rho \lt \pi,[/latex] and [latex]\cos \mu = \dfrac{-1}{3},~ \dfrac{\pi}{2} \lt \mu \lt \pi,[/latex] find exact values for

  1. [latex]\displaystyle \cos (\rho - \mu)[/latex]
  2. [latex]\displaystyle \tan (\rho - \mu)[/latex]

13.

If [latex]\tan (x + y) =2[/latex] and [latex]\tan y = \dfrac{1}{3},[/latex] find [latex]\tan x\text{.}[/latex]

14.

If [latex]\tan (x - y) =\dfrac{1}{4}[/latex] and [latex]\tan x = 4,[/latex] find [latex]\tan y\text{.}[/latex]

Exercise Group

For Problems 15-16, use the sum and difference formulas to expand each expression.

15.

[latex]\tan \left(t - \dfrac{5\pi}{3}\right)[/latex]

16.

[latex]\cos \left(s+ \dfrac{7\pi}{4}\right)[/latex]

Exercise Group

For Problems 17–18, use the figure to find the trigonometric ratios.
triangle

17.
  1. [latex]\displaystyle \sin \theta[/latex]
  2. [latex]\displaystyle \cos \theta[/latex]
  3. [latex]\displaystyle \tan \theta[/latex]
  4. [latex]\displaystyle \sin 2\theta[/latex]
  5. [latex]\displaystyle \cos 2\theta[/latex]
  6. [latex]\displaystyle \tan 2\theta[/latex]
18.
  1. [latex]\displaystyle \sin \phi[/latex]
  2. [latex]\displaystyle \cos \phi[/latex]
  3. [latex]\displaystyle \tan \phi[/latex]
  4. [latex]\displaystyle \sin 2\phi[/latex]
  5. [latex]\displaystyle \cos 2\phi[/latex]
  6. [latex]\displaystyle \tan 2\phi[/latex]

Exercise Group

For Problems 19–24, use identities to simplify each expression.

19.

[latex]\sin 4x \cos 5x + \cos 4x \sin 5x[/latex]

20.

[latex]\cos 3\beta \cos 1.5 - \sin 3\beta \sin 1.5[/latex]

21.

[latex]\dfrac{\tan 2\phi - \tan 2}{1 + \tan 2\phi \tan 2}[/latex]

22.

[latex]\dfrac{\tan \dfrac{5\pi}{9} - \tan \dfrac{2\pi}{9}}{1 + \tan \dfrac{5\pi}{9} \tan \dfrac{2\pi}{9}}[/latex]

23.

[latex]2\sin 4\theta \cos 4\theta[/latex]

24.

[latex]1-2\sin^2 3\phi[/latex]

Exercise Group

For Problems 25–26,

  1. Use identities to rewrite the equation in terms of a single angle.
  2. Solve. Give exact solutions between [latex]0[/latex] and [latex]2\pi\text{.}[/latex]
25.

[latex]\cos 2\theta - \sin \theta = 1[/latex]

26.

[latex]\tan 2z + \tan z = 0[/latex]

Exercise Group

For Problems 27–28, graph the function and decide if it has an inverse function.

27.

[latex]f(x) = 4x - x^3[/latex]

28.

[latex]g(x) = 5 + \sqrt[3]{x - 2}[/latex]

Exercise Group

For Problems 29–30, give exact values in radians.

29.
  1. [latex]\displaystyle \tan^{-1}(-\sqrt{3})[/latex]
  2. [latex]\displaystyle \arccos \left(-\dfrac{1}{2}\right)[/latex]
30.
  1. [latex]\displaystyle \arcsin (-1)[/latex]
  2. [latex]\displaystyle \cos^{-1}(-1)[/latex]

31.

An IMAX movie screen is 52.8 feet high.

  1. If your line of sight is level with the bottom of the screen, write an expression for the angle subtended by the screen when you sit [latex]x[/latex] feet away.
  2. Evaluate your expression for [latex]x = 20[/latex] feet and for [latex]x = 100[/latex] feet.

32.

Rembrandt’s painting The Night Watch measures 13 feet high by 16 feet wide.

  1. Write an expression for the angle subtended by the width of the painting if you sit [latex]d[/latex] feet back from the center of the painting.
  2. Evaluate your expression for [latex]d = 10[/latex] feet and for [latex]d = 25[/latex] feet.

Exercise Group

For Problems 33–34, solve for [latex]\theta\text{.}[/latex]

33.

[latex]v_y = v_0\sin \theta - gt[/latex]

34.

[latex]\Delta W = -q_0 E\cos (\pi - \theta)\Delta l[/latex]

Exercise Group

For Problems 35–36, find exact values without using a calculator.

35.

[latex]\cos\left[\tan^{-1}\left(\dfrac{-\sqrt{5}}{2}\right)\right][/latex]

36.

[latex]\tan\left[\sin^{-1}\left(\dfrac{2}{7}\right)\right][/latex]

Exercise Group

For Problems 37–38, simplify the expression.

37.

[latex]\sin(\cos^{-1}2t)[/latex]

38.

[latex]\tan(\cos^{-1}m)[/latex]

39.

Explain why one of the expressions [latex]\sin^{-1}x[/latex] or [latex]\sin^{-1}\left(\dfrac{1}{x}\right)[/latex] must be undefined.

40.

Does [latex]\sin^{-1}(-x) = -\sin^{-1}(x)\text{?}[/latex] Does [latex]\cos^{-1}(-x) = -\cos^{-1}(x)\text{?}[/latex]

Exercise Group

For Problems 41–42, evaluate. Round answers to 3 decimal places if necessary.

41.
  1. [latex]\displaystyle \csc 27°[/latex]
  2. [latex]\displaystyle \sec 108°[/latex]
  3. [latex]\displaystyle \cot 245°[/latex]
42.
  1. [latex]\displaystyle \csc 5.3[/latex]
  2. [latex]\displaystyle \cot 0.98[/latex]
  3. [latex]\displaystyle \sec 2.17[/latex]

Exercise Group

For Problems 43–50, find all six trigonometric ratios for the angle [latex]\theta\text{.}[/latex]

43.

triangle

44.

triangle

45.

angle

46.

angle

47.

angle

48.

angle

49.

[latex]6\cos \alpha = -5\text{,}[/latex] [latex]~ 180° \lt \alpha \lt 270°[/latex]

50.

[latex]4\sin \theta = 3,~ \theta[/latex] is obtuse

Exercise Group

For Problems 51–56, write algebraic expressions for the six trigonometric ratios of the angle.

51.

triangle

52.

triangle

53.

triangle

54.

triangle

55.

[latex]2\sin \alpha - k = 0,~\dfrac{\pi}{2} \lt \alpha \lt \pi[/latex]

56.

[latex]h\cos \beta - 3 = 0,~\dfrac{3\pi}{2} \lt \beta \lt 2\pi[/latex]

Exercise Group

For Problems 57–58, find all six trigonometric ratios of the arc [latex]\theta\text{.}[/latex] Round to two places.

57.

circle

58.

circle

Exercise Group

For Problems 59–62, evaluate exactly.

59.

[latex]4\cot \dfrac{3\pi}{4} - \sec^2 \dfrac{\pi}{3}[/latex]

60.

[latex]\dfrac{1}{2}\csc \dfrac{2\pi}{3} + \tan^2 \dfrac{5\pi}{6}[/latex]

61.

[latex]\csc \dfrac{7\pi}{6}\cos \dfrac{5\pi}{4}[/latex]

62.

[latex]\sec \dfrac{7\pi}{4}\cot \dfrac{4\pi}{3}[/latex]

Exercise Group

For Problems 63–64, find all solutions between [latex]0[/latex] and [latex]2\pi\text{.}[/latex] Round your solutions to tenths.

63.

[latex]3\csc \theta + 2 = 12[/latex]

64.

[latex]5\cot \theta + 15 = -3[/latex]

Exercise Group

For Problems 65–70, sketch a graph of each function. Then choose the function or functions described by each statement.

[latex]y = \sec x ~~~~~~~~~~~ y = \csc x ~~~~~~~~~~~ y = \cot x[/latex]

[latex]y = \cos^{-1} x ~~~~~~~~ y = \sin^{-1} x ~~~~~~ y = \tan^{-1} x[/latex]

65.

The graph has vertical asymptotes at multiples of [latex]\pi\text{.}[/latex]

66.

The graph has a horizontal asymptote at [latex]\dfrac{\pi}{2}\text{.}[/latex]

67.

The function values are the reciprocals of [latex]y = \cos x\text{.}[/latex]

68.

The function is defined only for [latex]x[/latex]-values between [latex]-1[/latex] and [latex]1\text{,}[/latex] inclusive.

69.

None of the function values lie between [latex]-1[/latex] and [latex]1\text{.}[/latex]

70.

The graph includes the origin.

Exercise Group

For Problems 71–74,

  1. Graph the function on the interval [latex]-2\pi \le\ x \le 2\pi\text[/latex] and use the graph to write the function in a simpler form.
  2. Verify your conjecture algebraically.
71.

[latex]f(x)=\tan x(\cos x - \cot x)[/latex]

72.

[latex]g(x)=\csc x - \cot x\cos x[/latex]

73.

[latex]G(x) = \sin x(\sec x - \csc x)[/latex]

74.

[latex]F(x) = \dfrac{1}{2}\left(\dfrac{\cos x}{1+\sin x} + \dfrac{1+ \sin x}{\cos x}\right)[/latex]

Exercise Group

For Problems 75–78, simplify the expression.

75.

[latex]1-\dfrac{\sin x}{\csc x}[/latex]

76.

[latex]\dfrac{\sin x}{\csc x}+\dfrac{\cos x}{\sec x}[/latex]

77.

[latex]\dfrac{2+\tan^2 B}{\sec^2 B} - 1[/latex]

78.

[latex]\dfrac{\csc t}{\tan t + \cot t}[/latex]

Exercise Group

For Problems 79–82, use the suggested substitution to simplify the expression.

79.

[latex]\dfrac{\sqrt{16+x^2}}{x},~~x = 4\tan \theta[/latex]

80.

[latex]x\sqrt{4-x^2},~~x=2\sin \theta[/latex]

81.

[latex]\dfrac{x^2 - 3}{x},~~x=\sqrt{3}\sec \theta[/latex]

82.

[latex]\dfrac{x}{\sqrt{x^2+2}},~~x=\sqrt{2}\tan \theta[/latex]

83.

This problem outlines a geometric proof of difference of angles formula for tangent.

  1. In the figure below left, [latex]\alpha=\angle ABC[/latex] and [latex]\beta = \angle DBC\text{.}[/latex] Write expressions in terms of [latex]\alpha[/latex] and [latex]\beta[/latex] for the sides [latex]AC,~DC,[/latex] and [latex]AD\text{.}[/latex]triangles
  2. In the figure above right, explain why [latex]\triangle ABC[/latex] is similar to [latex]\triangle FBE\text{.}[/latex]
  3. Explain why [latex]\angle FDC = \alpha\text{.}[/latex]
  4. Write an expression in terms of [latex]\alpha[/latex] and [latex]\beta[/latex] for side [latex]CF\text{.}[/latex]
  5. Explain why [latex]\triangle FBE[/latex] is similar to [latex]\triangle ADE\text{.}[/latex]
  6. Justify each equality in the statement
    [latex]\tan (\alpha - \beta) = \dfrac{DE}{BE} = \dfrac{AD}{BF} = \dfrac{\tan \alpha - \tan \beta}{1+\tan \alpha \tan \beta}[/latex]

84.

Let [latex]L_1[/latex] and [latex]L_2[/latex] be two lines with slopes [latex]m_1[/latex] and [latex]m_2\text{,}[/latex] respectively, and let [latex]\theta[/latex] be the acute angle formed between the two lines. Use an identity to show that

[latex]\tan \theta = \dfrac{m_2-m_1}{1+m_1m_2}[/latex]

Exercise Group

For Problems 85–86, use the fact that if [latex]\theta[/latex] is one angle of a triangle and [latex]s[/latex] is the length of the opposite side, then the diameter of the circumscribing circle is

[latex]d=s \csc \theta[/latex]

Round your answers to the nearest hundredth.

circle circumscribing a triangle

85.

In the figure above, find the diameter of the circumscribing circle, the angle [latex]\alpha\text{,}[/latex] and the sides [latex]a[/latex] and [latex]b\text{.}[/latex]

86.

A triangle has one side of length 17 cm and the angle opposite is [latex]26°\text{.}[/latex] Find the diameter of the circle that circumscribes the triangle.

 

License

Icon for the Creative Commons Attribution-ShareAlike 4.0 International License

Trigonometry Copyright © 2024 by LOUIS: The Louisiana Library Network is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License, except where otherwise noted.