Chapter 5: Continuous Random Variables
Introduction to Chapter 5: Continuous Random Variables
Continuous random variables have many applications. Baseball batting averages, IQ scores, the length of time a long distance telephone call lasts, the amount of money a person carries, the length of time a computer chip lasts, and SAT scores are just a few. The field of reliability depends on a variety of continuous random variables.
Note
How the random variable is defined is very important!
Collaborative Exercises
Section 5.3
Collaborative Exercise
Have each class member count the change he or she has in his or her pocket or purse. Your instructor will record the amounts in dollars and cents. Construct a histogram of the data taken by the class. Use five intervals. Draw a smooth curve through the bars. The graph should look approximately exponential. Then calculate the mean.
Let X = the amount of money a student in your class has in his or her pocket or purse.
The distribution for X is approximately exponential with mean, μ = _______ and m = _______. The standard deviation, σ = ________.
Draw the appropriate exponential graph. You should label the x– and y–axes, the decay rate, and the mean. Shade the area that represents the probability that one student has less than 💲.40 in his or her pocket or purse. (Shade P(x < 0.40)).
Media Attributions
- Chapter 5 Introduction Figure © OpenStax Introductory Statistics is licensed under a CC BY (Attribution) license