"

Chapter 9: Hypothesis Testing with Two Samples

Chapter 9 Review

9.1 Chapter Review

Two population means from independent samples where the population standard deviations are not known

  • Random Variable: [latex]{\overline{X}}_{1}-{\overline{X}}_{2}[/latex] = the difference of the sampling means
  • Distribution: Student’s t-distribution with degrees of freedom (variances not pooled)

Formula Review

  • Standard error:
    • [latex]\text{SE} = \sqrt{\frac{{\left({s}_{1}\right)}^{2}}{{n}_{1}}+\frac{{\left({s}_{2}\right)}^{2}}{{n}_{2}}}[/latex]
  • Test statistic (t-score):
    • [latex]t = \frac{\left({\overline{x}}_{1}-{\overline{x}}_{2}\right)-\left({\mu }_{1}-{\mu }_{2}\right)}{\sqrt{\frac{{\left({s}_{1}\right)}^{2}}{{n}_{1}}+\frac{{\left({s}_{2}\right)}^{2}}{{n}_{2}}}}[/latex]
    • [latex]{\overline{x}}_{1}[/latex] and [latex]{\overline{x}}_{2}[/latex] are the sample means.
    • [latex]\mu_1[/latex] and [latex]\mu_2[/latex] are the population means.
  • Degrees of freedom:
    • [latex]df=\frac{{\left(\frac{{\left({s}_{1}\right)}^{2}}{{n}_{1}}+\frac{{\left({s}_{2}\right)}^{2}}{{n}_{2}}\right)}^{2}}{\left(\frac{1}{{n}_{1}-1}\right){\left(\frac{{\left({s}_{1}\right)}^{2}}{{n}_{1}}\right)}^{2}+\left(\frac{1}{{n}_{2}-1}\right){\left(\frac{{\left({s}_{2}\right)}^{2}}{{n}_{2}}\right)}^{2}}[/latex]
    • [latex]s_1[/latex] and [latex]s_2[/latex] are the sample standard deviations.
    • [latex]n_1[/latex] and [latex]n_2[/latex] are the sample sizes.
  • Cohen’s d is the measure of effect size:
    •  [latex]d=\frac{{\overline{x}}_{1}-{\overline{x}}_{2}}{{s}_{pooled}}[/latex]
    • [latex]{s}_{pooled}=\sqrt{\frac{\left({n}_{1}-1\right){s}_{1}^{2}+\left({n}_{2}-1\right){s}_{2}^{2}}{{n}_{1}+{n}_{2}-2}}[/latex]

 

9.2 Chapter Review

A hypothesis test of two population means from independent samples where the population standard deviations are known will have these characteristics:

  • Random variable: [latex]\overline{{X}_{1}}–\overline{{X}_{2}}[/latex] = the difference of the means
  • Distribution: normal distribution

Formula Review

  • Normal Distribution:
    • [latex]{\overline{X}}_{1}–{\overline{X}}_{2}\sim N\left[{\mu }_{1}–{\mu }_{2},\sqrt{\frac{{\left({\sigma }_{1}\right)}^{2}}{{n}_{1}}+\frac{{\left({\sigma }_{2}\right)}^{2}}{{n}_{2}}}\right][/latex]
    • Generally [latex]\mu_1 - \mu_2 = 0[/latex].
  • Test Statistic (z-score):
    • [latex]z=\frac{\left({\overline{x}}_{1}–{\overline{x}}_{2}\right)–\left({\mu }_{1}–{\mu }_{2}\right)}{\sqrt{\frac{{\left({\sigma }_{1}\right)}^{2}}{{n}_{1}}+\frac{{\left({\sigma }_{2}\right)}^{2}}{{n}_{2}}}}[/latex]
    • Generally [latex]\mu_1 - \mu_2 = 0[/latex].
    • [latex]\sigma_1[/latex] and [latex]\sigma_2[/latex] are the known population standard deviations.
    • [latex]n_1[/latex] and [latex]n_2[/latex] are the sample sizes.
    • [latex]{\overline{x}}_{1}[/latex] and [latex]{\overline{x}}_{2}[/latex] are the sample means.
    • [latex]\mu_1[/latex] and [latex]\mu_2[/latex] are the population means.

9.3 Chapter Review

Test of two population proportions from independent samples.

Random variable: [latex]{p}_{A}–{p}_{B}=[/latex] difference between the two estimated proportions
Distribution: normal distribution

Formula Review

  • Pooled Proportion:
    • [latex]p_c = \frac{{x}_{F}+{x}_{M}}{{n}_{F}+{n}_{M}}[/latex]
  • Distribution for the differences:
    • [latex]{{p}^{\prime }}_{A}-{{p}^{\prime }}_{B}\sim N\left[0,\sqrt{{p}_{c}\left(1-{p}_{c}\right)\left(\frac{1}{{n}_{A}}+\frac{1}{{n}_{B}}\right)}\right][/latex]
    • The null hypothesis is [latex]H_0: p_A = p_B[/latex] or [latex]H_0: p_A - p_B = 0[/latex].
  • Test Statistic (z-score):
    • [latex]z=\frac{\left({{p}^{\prime }}_{A}-{{p}^{\prime }}_{B}\right)}{\sqrt{{p}_{c}\left(1-{p}_{c}\right)\left(\frac{1}{{n}_{A}}+\frac{1}{{n}_{B}}\right)}}[/latex]
    • The null hypothesis is [latex]H_0: p_A = p_B[/latex] or [latex]H_0: p_A - p_B = 0[/latex].
    • [latex]{{p}^{\prime }}_{A}[/latex] and [latex]{{p}^{\prime }}_{B}[/latex] are the sample proportions, [latex]{{p}^{\prime }}_{A}[/latex] and [latex]{{p}^{\prime }}_{B}[/latex] are the population proportions,
    • [latex]{p}_{c}[/latex] is the pooled proportion, and [latex]n_A[/latex] and [latex]n_B[/latex] are the sample sizes.

 

9.4 Chapter Review

A hypothesis test for matched or paired samples (t-test) has these characteristics:

  • Test the differences by subtracting one measurement from the other measurement
  • Random Variable: [latex]{\overline{x}}_{d}[/latex] = mean of the differences
  • Distribution: Student’s-t distribution with [latex]n – 1[/latex] degrees of freedom
  • If the number of differences is small (less than 30), the differences must follow a normal distribution.
  • Two samples are drawn from the same set of objects.
  • Samples are dependent.

Formula Review

  • Test Statistic (t-score):
    • [latex]t = \frac{{\overline{x}}_{d}-{\mu }_{d}}{\left(\frac{{s}_{d}}{\sqrt{n}}\right)}[/latex]
    • [latex]{\overline{x}}_{d}[/latex] is the mean of the sample differences.
    • [latex]\mu_d[/latex] is the mean of the population differences.
    • [latex]s_d[/latex] is the sample standard deviation of the differences.
    • [latex]n[/latex] is the sample size.

 

License

Icon for the Creative Commons Attribution-ShareAlike 4.0 International License

Introductory Statistics Copyright © 2024 by LOUIS: The Louisiana Library Network is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License, except where otherwise noted.